本文整理汇总了C++中SquareMatrix::SubMatrix方法的典型用法代码示例。如果您正苦于以下问题:C++ SquareMatrix::SubMatrix方法的具体用法?C++ SquareMatrix::SubMatrix怎么用?C++ SquareMatrix::SubMatrix使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SquareMatrix
的用法示例。
在下文中一共展示了SquareMatrix::SubMatrix方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: trymatm
//.........这里部分代码省略.........
SM1.Row(2) << 4 << 5;
SM1.Row(3) << 9 << 2 << 1;
SM1.Row(4) << 3 << 6 << 8 << 2;
SymmetricMatrix SM2(3);
SM2.Row(1) << 3;
SM2.Row(2) << -7 << -6;
SM2.Row(3) << 4 << -2 << -1;
SymmetricMatrix SM = KP(SM1, SM2);
Matrix M1 = SM1; Matrix M2 = SM2;
Matrix M = KP(SM1, SM2); M -= SM; Print(M);
M = KP(SM1, SM2) - SM; Print(M);
M = KP(M1, SM2) - SM; Print(M);
M = KP(SM1, M2) - SM; Print(M);
M = KP(M1, M2); M -= SM; Print(M);
}
{
Tracer et1("Stage 5");
Matrix A(2,3);
A << 3 << 5 << 2
<< 4 << 1 << 6;
Matrix B(3,4);
B << 7 << 2 << 9 << 11
<< 1 << 3 << 6 << 8
<< 4 << 10 << 5 << 12;
RowVector C(2); C << 3 << 7;
ColumnVector D(4); D << 0 << 5 << 13 << 11;
Matrix M = KP(C * A, B * D) - KP(C, B) * KP(A, D); Print(M);
}
{
Tracer et1("Stage 6");
RowVector A(3), B(5), C(15);
A << 5 << 2 << 4;
B << 3 << 2 << 0 << 1 << 6;
C << 15 << 10 << 0 << 5 << 30
<< 6 << 4 << 0 << 2 << 12
<< 12 << 8 << 0 << 4 << 24;
Matrix N = KP(A, B) - C; Print(N);
N = KP(A.t(), B.t()) - C.t(); Print(N);
N = KP(A.AsDiagonal(), B.AsDiagonal()) - C.AsDiagonal(); Print(N);
}
{
Tracer et1("Stage 7");
IdentityMatrix I(3);
ColumnVector CV(4); CV << 4 << 3 << 1 << 7;
Matrix A = KP(I, CV) + 5;
Matrix B(3,12);
B.Row(1) << 9 << 8 << 6 << 12 << 5 << 5 << 5 << 5 << 5 << 5 << 5 << 5;
B.Row(2) << 5 << 5 << 5 << 5 << 9 << 8 << 6 << 12 << 5 << 5 << 5 << 5;
B.Row(3) << 5 << 5 << 5 << 5 << 5 << 5 << 5 << 5 << 9 << 8 << 6 << 12;
B -= A.t(); Print(B);
}
{
Tracer et1("Stage 8"); // SquareMatrix
Matrix A(2,3), B(3,2);
A << 2 << 6 << 7
<< 4 << 3 << 9;
B << 1 << 3
<< 4 << 8
<< 0 << 6;
SquareMatrix AB = A * B;
Matrix M = (B.t() * A.t()).t(); M -= AB; Print(M);
AB = B * A;
M = (A.t() * B.t()).t(); M -= AB; Print(M);
AB.ReSize(5,5); AB = 0;
AB.SubMatrix(1,2,1,3) = A; AB.SubMatrix(4,5,3,5) = A;
AB.SubMatrix(1,3,4,5) = B; AB.SubMatrix(3,5,1,2) = B;
SquareMatrix C(5);
C.Row(1) << 2 << 6 << 7 << 1 << 3;
C.Row(2) << 4 << 3 << 9 << 4 << 8;
C.Row(3) << 1 << 3 << 0 << 0 << 6;
C.Row(4) << 4 << 8 << 2 << 6 << 7;
C.Row(5) << 0 << 6 << 4 << 3 << 9;
C -= AB; Print(C);
AB = A.SymSubMatrix(1,2);
AB = (AB | AB) & (AB | AB);
C.ReSize(4);
C.Row(1) << 2 << 6 << 2 << 6;
C.Row(2) << 4 << 3 << 4 << 3;
C.Row(3) << 2 << 6 << 2 << 6;
C.Row(4) << 4 << 3 << 4 << 3;
M = AB;
C -= M; Print(C);
C << M; C += -M; Print(C);
}
}