本文整理汇总了C++中SplineSurface::basis_u方法的典型用法代码示例。如果您正苦于以下问题:C++ SplineSurface::basis_u方法的具体用法?C++ SplineSurface::basis_u怎么用?C++ SplineSurface::basis_u使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SplineSurface
的用法示例。
在下文中一共展示了SplineSurface::basis_u方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ASSERT
//===========================================================================
vector<shared_ptr<SplineSurface> >
SurfaceCreators::separateRationalParts(const SplineSurface& sf)
//===========================================================================
{
bool rat = sf.rational();
ASSERT(rat);
int dim= sf.dimension();
int rdim = dim + 1;
vector<shared_ptr<SplineSurface> > sep_sfs;
vector<double> coefs(sf.coefs_begin(), sf.coefs_end());
int nmb1 = sf.numCoefs_u();
int nmb2 = sf.numCoefs_v();
vector<double> rcoefs;
int num_coefs = nmb1*nmb2;
vector<double>::const_iterator rcoef_iter = sf.rcoefs_begin();
for (int ki = 0; ki < num_coefs; ++ki) {
rcoefs.push_back(rcoef_iter[ki*rdim+1]);
for (int kj = 0; kj < dim; ++kj) {
coefs[ki*dim+kj] /= (rcoefs.back());
}
}
sep_sfs.push_back(shared_ptr<SplineSurface>
(new SplineSurface(nmb1, nmb2, sf.order_u(), sf.order_v(),
sf.basis_u().begin(), sf.basis_v().begin(),
coefs.begin(), dim)));
sep_sfs.push_back(shared_ptr<SplineSurface>
(new SplineSurface(nmb1, nmb2, sf.order_u(), sf.order_v(),
sf.basis_u().begin(), sf.basis_v().begin(),
rcoefs.begin(), 1)));
return sep_sfs;
}
示例2: splitSurfaceIntoPatches
//==========================================================================
void GeometryTools::splitSurfaceIntoPatches(const SplineSurface& sf,
vector<SplineSurface>& pat)
//==========================================================================
{
SplineSurface orig = sf;
orig.makeBernsteinKnotsU();
orig.makeBernsteinKnotsV();
int num_u = orig.numCoefs_u();
int num_v = orig.numCoefs_v();
int order_u = orig.order_u();
int order_v = orig.order_v();
int numpat_u = num_u / order_u;
int numpat_v = num_v / order_v;
pat.resize(numpat_u * numpat_v);
typedef vector<double>::const_iterator const_iter;
const_iter itu = orig.basis_u().begin();
const_iter itv;
for (int i = 0; i < numpat_u; ++i) {
itv = orig.basis_v().begin();
for (int j = 0; j < numpat_v; ++j) {
shared_ptr<SplineSurface>
new_sf(orig.subSurface(*itu, *itv,
*(itu+order_u), *(itv+order_v)));
pat[numpat_u*j + i] = *new_sf;
itv += order_v;
}
itu += order_u;
}
return;
}
示例3: main
int main(int argc, char** argv)
{
if (argc < 3) {
cerr << "Usage: " << argv[0]
<< " inputfile outputfile [max_coefs_u max_coefs_v]" << endl;
return 1;
}
ifstream in(argv[1]);
ofstream out(argv[2]);
if (!in || !out) {
cout << "Bad file(s) or filename(s)." << endl;
return 1;
}
ObjectHeader oh;
SplineSurface sf;
in >> oh >> sf;
int m = sf.numCoefs_v() - sf.order_v() + 1;
int n = sf.numCoefs_u() - sf.order_u() + 1;
if (argc >= 5) {
// Note the weird order (v then u)
m = min(atoi(argv[4])-sf.numCoefs_v(), m);
n = min(atoi(argv[3])-sf.numCoefs_u(), n);
}
int i;
vector<double> newknots_v;
vector<double> newknots_u;
for (i = 0; i < m; ++i) {
vector<double>::const_iterator it = sf.basis_v().begin();
double newknot = 0.5*it[sf.order_v()+i-1] + 0.5*it[sf.order_v()+i];
newknots_v.push_back(newknot);
}
for (i = 0; i < n; ++i) {
vector<double>::const_iterator it = sf.basis_u().begin();
double newknot = 0.5*it[sf.order_u()+i-1] + 0.5*it[sf.order_u()+i];
newknots_u.push_back(newknot);
}
sf.insertKnot_v(newknots_v);
sf.insertKnot_u(newknots_u);
out << oh << sf;
return 0;
}
示例4: while
//===========================================================================
shared_ptr<SplineSurface> SplineUtils::refineToBezier(const SplineSurface& spline_sf)
//===========================================================================
{
shared_ptr<SplineSurface> bez_sf;
const BsplineBasis& bas_u = spline_sf.basis_u();
const BsplineBasis& bas_v = spline_sf.basis_v();
const int order_u = bas_u.order();
const int order_v = bas_v.order();
// We extract the unique knots.
vector<double> new_knots_u, new_knots_v;
// vector<double> ref_knots_u, ref_knots_v;
vector<double>::const_iterator iter = bas_u.begin();
while (iter != bas_u.end() - order_u)
{
if (iter[0] != iter[1])
{
int knot_mult = bas_u.knotMultiplicity(iter[0]);
int num_insert = order_u - knot_mult;
if (num_insert > 0)
{
new_knots_u.insert(new_knots_u.end(), num_insert, iter[0]);
}
}
++iter;
}
iter = bas_v.begin();
while (iter != bas_v.end() - order_v)
{
if (iter[0] != iter[1])
{
int knot_mult = bas_v.knotMultiplicity(iter[0]);
int num_insert = order_v - knot_mult;
if (num_insert > 0)
{
new_knots_v.insert(new_knots_v.end(), num_insert, iter[0]);
}
}
++iter;
}
bez_sf = insertKnots(spline_sf,
new_knots_u, new_knots_v);
return bez_sf;
}
示例5: cart_to_bary
//==========================================================================
void cart_to_bary(const SplineSurface& sf, const BaryCoordSystem3D& bc,
SplineSurface& sf_bc)
//==========================================================================
{
ALWAYS_ERROR_IF(sf.dimension() != 3, "Dimension must be 3.");
int nu = sf.numCoefs_u();
int nv = sf.numCoefs_v();
Vector3D cart;
Vector4D bary;
vector<double> new_coefs;
if (!sf.rational()) {
new_coefs.resize(4 * nu * nv);
for (int iv = 0; iv < nv; ++iv) {
for (int iu = 0; iu < nu; ++iu) {
int offset = nu * iv + iu;
cart = Vector3D(sf.coefs_begin() + 3 * offset);
bary = bc.cartToBary(cart);
for (int j = 0; j < 4; ++j) {
new_coefs[4*offset + j] = bary[j];
}
}
}
} else {
new_coefs.resize(5 * nu * nv);
for (int iv = 0; iv < nv; ++iv) {
for (int iu = 0; iu < nu; ++iu) {
int offset = nu * iv + iu;
cart = Vector3D(sf.coefs_begin() + 3 * offset);
bary = bc.cartToBary(cart);
double w = sf.rcoefs_begin()[4*offset + 3];
for (int j = 0; j < 4; ++j) {
new_coefs[5*offset + j] = bary[j] * w;
}
new_coefs[5*offset + 4] = w;
}
}
}
sf_bc = SplineSurface(nu, nv, sf.order_u(), sf.order_v(),
sf.basis_u().begin(), sf.basis_v().begin(),
new_coefs.begin(), 4, sf.rational());
return;
}
示例6: createSplineSurface
//===========================================================================
SplineSurface* Torus::createSplineSurface() const
//===========================================================================
{
double umin = domain_.umin();
double umax = domain_.umax();
shared_ptr<Circle> circle = getMinorCircle(umin);
shared_ptr<SplineCurve> sccircle(circle->geometryCurve());
double angle = parbound_.umax() - parbound_.umin();
SplineSurface* sstorus
= SweepSurfaceCreator::rotationalSweptSurface(*sccircle, angle,
location_, z_axis_);
sstorus->basis_u().rescale(umin, umax);
if (isSwapped())
sstorus->swapParameterDirection();
return sstorus;
}
示例7: main
int main(int argc, char** argv)
{
if (argc != 6)
{
cout << "Usage: " << argv[0] << " surfaceinfile surface3doutfile points3doutfile num_u num_v" << endl;
exit(-1);
}
ifstream filein(argv[1]);
ALWAYS_ERROR_IF(filein.bad(), "Bad or no curvee input filename");
ObjectHeader head;
filein >> head;
if (head.classType() != SplineSurface::classType()) {
THROW("Not a spline surface");
}
SplineSurface sf;
filein >> sf;
ofstream fileoutsurf(argv[2]);
ALWAYS_ERROR_IF(fileoutsurf.bad(), "Bad surface output filename");
ofstream fileoutpts(argv[3]);
ALWAYS_ERROR_IF(fileoutpts.bad(), "Bad points output filename");
int num_u = atoi(argv[4]);
int num_v = atoi(argv[5]);
vector<double> pts, param_u, param_v;
sf.gridEvaluator(num_u, num_v, pts, param_u, param_v);
vector<double> coefs3d;
vector<Point> pts3d;
int dim = sf.dimension();
bool rational = sf.rational();
int ctrl_pts = sf.numCoefs_u() * sf.numCoefs_v();
vector<double>::const_iterator it = sf.ctrl_begin();
for (int i = 0; i < ctrl_pts; ++i)
{
if (dim <= 3)
for (int j = 0; j < 3; ++j)
{
if (j>=dim)
coefs3d.push_back(0.0);
else
{
coefs3d.push_back(*it);
++it;
}
}
else
{
for (int j = 0; j < 3; ++j, ++it)
coefs3d.push_back(*it);
it += (dim-3);
}
if (rational)
{
coefs3d.push_back(*it);
++it;
}
}
int pts_pos = 0;
for (int i = 0; i < num_u*num_v; ++i)
{
double x, y, z;
if (dim == 0)
x = 0.0;
else
x = pts[pts_pos];
if (dim <= 1)
y = 0.0;
else
y = pts[pts_pos+1];
if (dim <= 2)
z = 0.0;
else
z = pts[pts_pos+2];
pts_pos += dim;
pts3d.push_back(Point(x, y, z));
}
SplineSurface sf3d(sf.basis_u(), sf.basis_v(), coefs3d.begin(), 3, rational);
sf3d.writeStandardHeader(fileoutsurf);
sf3d.write(fileoutsurf);
fileoutpts << "400 1 0 4 255 255 0 255" << endl;
fileoutpts << pts3d.size() << endl;
for (int i = 0; i < (int)pts3d.size(); ++i)
fileoutpts << pts3d[i] << endl;
}
示例8: refinedBezierCoefsCubic
//===========================================================================
void SplineUtils::refinedBezierCoefsCubic(SplineSurface& spline_sf,
int ind_u_min, int ind_v_min,
vector<double>& bez_coefs)
//===========================================================================
{
assert(!spline_sf.rational());
if (bez_coefs.size() != 48)
bez_coefs.resize(48);
std::fill(bez_coefs.begin(), bez_coefs.end(), 0.0);
// Values for inpute spline surface.
int dim = spline_sf.dimension();
int order_u = spline_sf.order_u();
int order_v = spline_sf.order_u();
int num_coefs_u = spline_sf.numCoefs_u();
int num_coefs_v = spline_sf.numCoefs_v();
// Checking that input index is within range.
assert(ind_u_min >= order_u - 1 && ind_u_min < num_coefs_u);
assert(ind_v_min >= order_v - 1 && ind_v_min < num_coefs_v);
BsplineBasis& basis_u = spline_sf.basis_u();
BsplineBasis& basis_v = spline_sf.basis_v();
double* knot_u = &basis_u.begin()[0];
double* knot_v = &basis_v.begin()[0];
// We expect the knot index to refer to the last occurence.
assert(knot_u[ind_u_min] != knot_u[ind_u_min+1]);
assert(knot_v[ind_v_min] != knot_v[ind_v_min+1]);
// We expect knot mult to be 1 or 4.
int knot_mult_umin = (knot_u[ind_u_min-1] == knot_u[ind_u_min]) ? 4 : 1;
int knot_mult_umax = (knot_u[ind_u_min+1] == knot_u[ind_u_min+2]) ? 4 : 1;
int knot_mult_vmin = (knot_v[ind_v_min-1] == knot_v[ind_v_min]) ? 4 : 1;
int knot_mult_vmax = (knot_v[ind_v_min+1] == knot_v[ind_v_min+2]) ? 4 : 1;
bool kreg_at_ustart = (knot_mult_umin == 4);
bool kreg_at_uend = (knot_mult_umax == 4);
vector<double> transf_mat_u(16, 0.0);
// if (!kreg_at_ustart && !kreg_at_uend)
splineToBezierTransfMat(knot_u + ind_u_min - 3,
transf_mat_u);
#ifndef NDEBUG
std::cout << "\ntransf_mat_u=" << std::endl;
for (size_t kj = 0; kj < 4; ++kj)
{
for (size_t ki = 0; ki < 4; ++ki)
std::cout << transf_mat_u[kj*4+ki] << " ";
std::cout << std::endl;
}
std::cout << std::endl;
#endif // NDEBUG
// else
// cubicTransfMat(knot_u + ind_u_min - 3,
// kreg_at_ustart, kreg_at_uend,
// transf_mat_u);
bool kreg_at_vstart = (knot_mult_vmin == 4);
bool kreg_at_vend = (knot_mult_vmax == 4);
vector<double> transf_mat_v(16, 0.0);
// if (!kreg_at_ustart && !kreg_at_uend)
splineToBezierTransfMat(knot_v + ind_v_min - 3,
transf_mat_v);
#ifndef NDEBUG
std::cout << "\ntransf_mat_v=" << std::endl;
for (size_t kj = 0; kj < 4; ++kj)
{
for (size_t ki = 0; ki < 4; ++ki)
std::cout << transf_mat_v[kj*4+ki] << " ";
std::cout << std::endl;
}
std::cout << std::endl;
#endif // NDEBUG
extractBezierCoefs(&spline_sf.coefs_begin()[0],
num_coefs_u, num_coefs_v,
ind_u_min, ind_v_min,
transf_mat_u, transf_mat_v,
bez_coefs);
return;
}