当前位置: 首页>>代码示例>>C++>>正文


C++ SparseMatrixType类代码示例

本文整理汇总了C++中SparseMatrixType的典型用法代码示例。如果您正苦于以下问题:C++ SparseMatrixType类的具体用法?C++ SparseMatrixType怎么用?C++ SparseMatrixType使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了SparseMatrixType类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: assign_to_dense

typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type
assign_to_dense(SparseMatrixType const & A,
                viennacl::matrix_base<NumericT> & B)
{
  assert( (A.size1() == B.size1()) && bool("Size check failed for assignment to dense matrix: size1(A) != size1(B)"));
  assert( (A.size2() == B.size1()) && bool("Size check failed for assignment to dense matrix: size2(A) != size2(B)"));

  switch (viennacl::traits::handle(A).get_active_handle_id())
  {
    case viennacl::MAIN_MEMORY:
      viennacl::linalg::host_based::amg::assign_to_dense(A, B);
      break;
#ifdef VIENNACL_WITH_OPENCL
    case viennacl::OPENCL_MEMORY:
      viennacl::linalg::opencl::amg::assign_to_dense(A, B);
      break;
#endif
#ifdef VIENNACL_WITH_CUDA
    case viennacl::CUDA_MEMORY:
      viennacl::linalg::cuda::amg::assign_to_dense(A, B);
      break;
#endif
    case viennacl::MEMORY_NOT_INITIALIZED:
      throw memory_exception("not initialised!");
    default:
      throw memory_exception("not implemented");
  }
}
开发者ID:cdeterman,项目名称:RViennaCL,代码行数:28,代码来源:amg_operations.hpp

示例2: prod_impl

    typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type
    prod_impl(const SparseMatrixType & mat,
              const viennacl::vector_base<ScalarType> & vec,
                    viennacl::vector_base<ScalarType> & result)
    {
      assert( (mat.size1() == result.size()) && bool("Size check failed for compressed matrix-vector product: size1(mat) != size(result)"));
      assert( (mat.size2() == vec.size())    && bool("Size check failed for compressed matrix-vector product: size2(mat) != size(x)"));

      switch (viennacl::traits::handle(mat).get_active_handle_id())
      {
        case viennacl::MAIN_MEMORY:
          viennacl::linalg::host_based::prod_impl(mat, vec, result);
          break;
#ifdef VIENNACL_WITH_OPENCL
        case viennacl::OPENCL_MEMORY:
          viennacl::linalg::opencl::prod_impl(mat, vec, result);
          break;
#endif
#ifdef VIENNACL_WITH_CUDA
        case viennacl::CUDA_MEMORY:
          viennacl::linalg::cuda::prod_impl(mat, vec, result);
          break;
#endif
        case viennacl::MEMORY_NOT_INITIALIZED:
          throw memory_exception("not initialised!");
        default:
          throw memory_exception("not implemented");
      }
    }
开发者ID:GnsP,项目名称:viennacl-dev,代码行数:29,代码来源:sparse_matrix_operations.hpp

示例3: initPreconditioner

void initPreconditioner(const SparseMatrixType& A, SparseMatrixType& M)
{
    typedef typename SparseMatrixType::value_type ScalarType;
    M.resize(A.size1(), A.size2(), false);
    for(typename SparseMatrixType::const_iterator1 row_it = A.begin1(); row_it!= A.end1(); ++row_it)
    {
        //
        for(typename SparseMatrixType::const_iterator2 col_it = row_it.begin(); col_it != row_it.end(); ++col_it)
        {
            M(col_it.index1(),col_it.index2()) = static_cast<ScalarType>(1);
        }
    }
}
开发者ID:,项目名称:,代码行数:13,代码来源:

示例4: sparse_block

template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref)
{
  const Index rows = ref.rows();
  const Index cols = ref.cols();
  const Index inner = ref.innerSize();
  const Index outer = ref.outerSize();

  typedef typename SparseMatrixType::Scalar Scalar;
  typedef typename SparseMatrixType::StorageIndex StorageIndex;

  double density = (std::max)(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
  typedef SparseVector<Scalar> SparseVectorType;

  Scalar s1 = internal::random<Scalar>();
  {
    SparseMatrixType m(rows, cols);
    DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
    initSparse<Scalar>(density, refMat, m);

    VERIFY_IS_APPROX(m, refMat);

    // test InnerIterators and Block expressions
    for (int t=0; t<10; ++t)
    {
      Index j = internal::random<Index>(0,cols-2);
      Index i = internal::random<Index>(0,rows-2);
      Index w = internal::random<Index>(1,cols-j);
      Index h = internal::random<Index>(1,rows-i);

      VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
      for(Index c=0; c<w; c++)
      {
        VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
        for(Index r=0; r<h; r++)
        {
          VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
          VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
        }
      }
      for(Index r=0; r<h; r++)
      {
        VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
        for(Index c=0; c<w; c++)
        {
          VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
          VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
        }
      }
      
      VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
      VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
      for(Index r=0; r<h; r++)
      {
        VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
        VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
        for(Index c=0; c<w; c++)
        {
          VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
          VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
          
          VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
          VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
          if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
          {
            VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
          }
          if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
          {
            VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
          }
        }
      }
      for(Index c=0; c<w; c++)
      {
        VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
        VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
      }
    }

    for(Index c=0; c<cols; c++)
    {
      VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
      VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
    }

    for(Index r=0; r<rows; r++)
    {
      VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
      VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
    }
  }

  // test innerVector()
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
//.........这里部分代码省略.........
开发者ID:muhammedabdelnasser,项目名称:Vehicle-Steering-Using-Model-Predictive-Control,代码行数:101,代码来源:sparse_block.cpp

示例5: sparse_extra

template<typename SparseMatrixType> void sparse_extra(const SparseMatrixType& ref)
{
  typedef typename SparseMatrixType::Index Index;
  const Index rows = ref.rows();
  const Index cols = ref.cols();
  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = (std::max)(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  SparseMatrixType m(rows, cols);
  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
  DenseVector vec1 = DenseVector::Random(rows);

  std::vector<Vector2i> zeroCoords;
  std::vector<Vector2i> nonzeroCoords;
  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
    return;

  // test coeff and coeffRef
  for (int i=0; i<(int)zeroCoords.size(); ++i)
  {
    VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
    if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
      VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
  }
  VERIFY_IS_APPROX(m, refMat);

  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);

  VERIFY_IS_APPROX(m, refMat);

  // random setter
//   {
//     m.setZero();
//     VERIFY_IS_NOT_APPROX(m, refMat);
//     SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
//     std::vector<Vector2i> remaining = nonzeroCoords;
//     while(!remaining.empty())
//     {
//       int i = internal::random<int>(0,remaining.size()-1);
//       w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
//       remaining[i] = remaining.back();
//       remaining.pop_back();
//     }
//   }
//   VERIFY_IS_APPROX(m, refMat);

    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
    #ifdef EIGEN_UNORDERED_MAP_SUPPORT
    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
    #endif
    #ifdef _DENSE_HASH_MAP_H_
    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
    #endif
    #ifdef _SPARSE_HASH_MAP_H_
    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
    #endif


  // test RandomSetter
  /*{
    SparseMatrixType m1(rows,cols), m2(rows,cols);
    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
    initSparse<Scalar>(density, refM1, m1);
    {
      Eigen::RandomSetter<SparseMatrixType > setter(m2);
      for (int j=0; j<m1.outerSize(); ++j)
        for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
          setter(i.index(), j) = i.value();
    }
    VERIFY_IS_APPROX(m1, m2);
  }*/


}
开发者ID:CaptainFalco,项目名称:OpenPilot,代码行数:82,代码来源:sparse_extra.cpp

示例6: Solve

    bool SuperLUSolver::Solve(SparseMatrixType& rA, VectorType& rX, VectorType& rB)
    {
        //std::cout << "matrix size in solver:  " << rA.size1() << std::endl;
        //std::cout << "RHS size in solver SLU: " << rB.size() << std::endl;

//               typedef ublas::compressed_matrix<double, ublas::row_major, 0,
//                 ublas::unbounded_array<int>, ublas::unbounded_array<double> > cm_t;

	    //make a copy of the RHS
	    VectorType rC = rB;

        superlu_options_t options;
        SuperLUStat_t stat;

        /* Set the default input options:
            options.Fact = DOFACT;
            options.Equil = YES;
            options.ColPerm = COLAMD;
            options.DiagPivotThresh = 1.0;
            options.Trans = NOTRANS;
            options.IterRefine = NOREFINE;
            options.SymmetricMode = NO;
            options.PivotGrowth = NO;
            options.ConditionNumber = NO;
            options.PrintStat = YES;
        */
        set_default_options(&options);
        options.IterRefine = SLU_DOUBLE;
// 		options.ColPerm = MMD_AT_PLUS_A;

        //Fill the SuperLU matrices
        SuperMatrix Aslu, B, L, U;

        //create a copy of the matrix
        int *index1_vector = new (std::nothrow) int[rA.index1_data().size()];
        int *index2_vector = new (std::nothrow) int[rA.index2_data().size()];
// 		double *values_vector = new (std::nothrow) double[rA.value_data().size()];

        for( int unsigned i = 0; i < rA.index1_data().size(); i++ )
            index1_vector[i] = (int)rA.index1_data()[i];

        for( unsigned int i = 0; i < rA.index2_data().size(); i++ )
            index2_vector[i] = (int)rA.index2_data()[i];

        /*		for( unsigned int i = 0; i < rA.value_data().size(); i++ )
        		    values_vector[i] = (double)rA.value_data()[i];*/

        //create a copy of the rhs vector (it will be overwritten with the solution)
        /*		double *b_vector = new (std::nothrow) double[rB.size()];
        		for( unsigned int i = 0; i < rB.size(); i++ )
        		    b_vector[i] = rB[i];*/
        /*
        		dCreate_CompCol_Matrix (&Aslu, rA.size1(), rA.size2(),
        					       rA.nnz(),
        					      values_vector,
        					      index2_vector,
         					      index1_vector,
        					      SLU_NR, SLU_D, SLU_GE
        					      );*/

        //works also with dCreate_CompCol_Matrix
        dCreate_CompRow_Matrix (&Aslu, rA.size1(), rA.size2(),
                                rA.nnz(),
                                rA.value_data().begin(),
                                index2_vector, //can not avoid a copy as ublas uses unsigned int internally
                                index1_vector, //can not avoid a copy as ublas uses unsigned int internally
                                SLU_NR, SLU_D, SLU_GE
                               );

        dCreate_Dense_Matrix (&B, rB.size(), 1,&rB[0],rB.size(),SLU_DN, SLU_D, SLU_GE);

        //allocate memory for permutation arrays
        int* perm_c;
        int* perm_r;
        if ( !(perm_c = intMalloc(rA.size1())) ) ABORT("Malloc fails for perm_c[].");
        if ( !(perm_r = intMalloc(rA.size2())) ) ABORT("Malloc fails for perm_r[].");


        //initialize container for statistical data
        StatInit(&stat);

        //call solver routine
        int info;
        dgssv(&options, &Aslu, perm_c, perm_r, &L, &U, &B, &stat, &info);

        //print output
        if (options.PrintStat) {
        StatPrint(&stat);
        }

        //resubstitution of results
        #pragma omp parallel for
        for(int i=0; i<static_cast<int>(rB.size()); i++ )
            rX[i] = rB[i]; // B(i,0);

	    //recover the RHS
	    rB=rC;

        //deallocate memory used
        StatFree(&stat);
//.........这里部分代码省略.........
开发者ID:htphuc,项目名称:O2FEMpp,代码行数:101,代码来源:superlu_solver.cpp

示例7: sparse_basic

template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
  const int rows = ref.rows();
  const int cols = ref.cols();
  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = std::max(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  SparseMatrixType m(rows, cols);
  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
  DenseVector vec1 = DenseVector::Random(rows);
  Scalar s1 = ei_random<Scalar>();

  std::vector<Vector2i> zeroCoords;
  std::vector<Vector2i> nonzeroCoords;
  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
    return;

  // test coeff and coeffRef
  for (int i=0; i<(int)zeroCoords.size(); ++i)
  {
    VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
    if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
      VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
  }
  VERIFY_IS_APPROX(m, refMat);

  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);

  VERIFY_IS_APPROX(m, refMat);
  /*
  // test InnerIterators and Block expressions
  for (int t=0; t<10; ++t)
  {
    int j = ei_random<int>(0,cols-1);
    int i = ei_random<int>(0,rows-1);
    int w = ei_random<int>(1,cols-j-1);
    int h = ei_random<int>(1,rows-i-1);

//     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
    for(int c=0; c<w; c++)
    {
      VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
      for(int r=0; r<h; r++)
      {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
      }
    }
//     for(int r=0; r<h; r++)
//     {
//       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
//       for(int c=0; c<w; c++)
//       {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
//       }
//     }
  }

  for(int c=0; c<cols; c++)
  {
    VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
    VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
  }

  for(int r=0; r<rows; r++)
  {
    VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
    VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
  }
  */

  // test SparseSetters
  // coherent setter
  // TODO extend the MatrixSetter
//   {
//     m.setZero();
//     VERIFY_IS_NOT_APPROX(m, refMat);
//     SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
//     for (int i=0; i<nonzeroCoords.size(); ++i)
//     {
//       w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
//     }
//   }
//   VERIFY_IS_APPROX(m, refMat);

  // random setter
//   {
//     m.setZero();
//     VERIFY_IS_NOT_APPROX(m, refMat);
//     SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
//     std::vector<Vector2i> remaining = nonzeroCoords;
//     while(!remaining.empty())
//     {
//.........这里部分代码省略.........
开发者ID:aeslaughter,项目名称:libmesh,代码行数:101,代码来源:eigen2_sparse_basic.cpp

示例8: sparse_permutations

template<int OtherStorage, typename SparseMatrixType> void sparse_permutations(const SparseMatrixType& ref)
{
  typedef typename SparseMatrixType::Index Index;

  const Index rows = ref.rows();
  const Index cols = ref.cols();
  typedef typename SparseMatrixType::Scalar Scalar;
  typedef typename SparseMatrixType::Index Index;
  typedef SparseMatrix<Scalar, OtherStorage, Index> OtherSparseMatrixType;
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Index,Dynamic,1> VectorI;

  double density = (std::max)(8./(rows*cols), 0.01);

  SparseMatrixType mat(rows, cols), up(rows,cols), lo(rows,cols);
  OtherSparseMatrixType res;
  DenseMatrix mat_d = DenseMatrix::Zero(rows, cols), up_sym_d, lo_sym_d, res_d;

  initSparse<Scalar>(density, mat_d, mat, 0);

  up = mat.template triangularView<Upper>();
  lo = mat.template triangularView<Lower>();

  up_sym_d = mat_d.template selfadjointView<Upper>();
  lo_sym_d = mat_d.template selfadjointView<Lower>();

  VERIFY_IS_APPROX(mat, mat_d);
  VERIFY_IS_APPROX(up, DenseMatrix(mat_d.template triangularView<Upper>()));
  VERIFY_IS_APPROX(lo, DenseMatrix(mat_d.template triangularView<Lower>()));

  PermutationMatrix<Dynamic> p, p_null;
  VectorI pi;
  randomPermutationVector(pi, cols);
  p.indices() = pi;

  res = mat*p;
  res_d = mat_d*p;
  VERIFY(res.isApprox(res_d) && "mat*p");

  res = p*mat;
  res_d = p*mat_d;
  VERIFY(res.isApprox(res_d) && "p*mat");

  res = mat*p.inverse();
  res_d = mat*p.inverse();
  VERIFY(res.isApprox(res_d) && "mat*inv(p)");

  res = p.inverse()*mat;
  res_d = p.inverse()*mat_d;
  VERIFY(res.isApprox(res_d) && "inv(p)*mat");

  res = mat.twistedBy(p);
  res_d = (p * mat_d) * p.inverse();
  VERIFY(res.isApprox(res_d) && "p*mat*inv(p)");


  res = mat.template selfadjointView<Upper>().twistedBy(p_null);
  res_d = up_sym_d;
  VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");

  res = mat.template selfadjointView<Lower>().twistedBy(p_null);
  res_d = lo_sym_d;
  VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");


  res = up.template selfadjointView<Upper>().twistedBy(p_null);
  res_d = up_sym_d;
  VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");

  res = lo.template selfadjointView<Lower>().twistedBy(p_null);
  res_d = lo_sym_d;
  VERIFY(res.isApprox(res_d) && "lower selfadjoint full");


  res = mat.template selfadjointView<Upper>();
  res_d = up_sym_d;
  VERIFY(res.isApprox(res_d) && "full selfadjoint upper to full");

  res = mat.template selfadjointView<Lower>();
  res_d = lo_sym_d;
  VERIFY(res.isApprox(res_d) && "full selfadjoint lower to full");

  res = up.template selfadjointView<Upper>();
  res_d = up_sym_d;
  VERIFY(res.isApprox(res_d) && "upper selfadjoint to full");

  res = lo.template selfadjointView<Lower>();
  res_d = lo_sym_d;
  VERIFY(res.isApprox(res_d) && "lower selfadjoint full");


  res.template selfadjointView<Upper>() = mat.template selfadjointView<Upper>();
  res_d = up_sym_d.template triangularView<Upper>();
  VERIFY(res.isApprox(res_d) && "full selfadjoint upper to upper");

  res.template selfadjointView<Lower>() = mat.template selfadjointView<Upper>();
  res_d = up_sym_d.template triangularView<Lower>();
  VERIFY(res.isApprox(res_d) && "full selfadjoint upper to lower");

  res.template selfadjointView<Upper>() = mat.template selfadjointView<Lower>();
//.........这里部分代码省略.........
开发者ID:aeslaughter,项目名称:libmesh,代码行数:101,代码来源:sparse_permutations.cpp

示例9: sparse_basic

template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
  typedef typename SparseMatrixType::Index Index;

  const Index rows = ref.rows();
  const Index cols = ref.cols();
  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = (std::max)(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  SparseMatrixType m(rows, cols);
  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
  DenseVector vec1 = DenseVector::Random(rows);
  Scalar s1 = internal::random<Scalar>();

  std::vector<Vector2i> zeroCoords;
  std::vector<Vector2i> nonzeroCoords;
  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
    return;

  // test coeff and coeffRef
  for (int i=0; i<(int)zeroCoords.size(); ++i)
  {
    VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
    if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
      VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
  }
  VERIFY_IS_APPROX(m, refMat);

  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);

  VERIFY_IS_APPROX(m, refMat);
  /*
  // test InnerIterators and Block expressions
  for (int t=0; t<10; ++t)
  {
    int j = internal::random<int>(0,cols-1);
    int i = internal::random<int>(0,rows-1);
    int w = internal::random<int>(1,cols-j-1);
    int h = internal::random<int>(1,rows-i-1);

//     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
    for(int c=0; c<w; c++)
    {
      VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
      for(int r=0; r<h; r++)
      {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
      }
    }
//     for(int r=0; r<h; r++)
//     {
//       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
//       for(int c=0; c<w; c++)
//       {
//         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
//       }
//     }
  }

  for(int c=0; c<cols; c++)
  {
    VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
    VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
  }

  for(int r=0; r<rows; r++)
  {
    VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
    VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
  }
  */

    // test insert (inner random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      m2.reserve(10);
      for (int j=0; j<cols; ++j)
      {
        for (int k=0; k<rows/2; ++k)
        {
          int i = internal::random<int>(0,rows-1);
          if (m1.coeff(i,j)==Scalar(0))
            m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        }
      }
      m2.finalize();
      VERIFY_IS_APPROX(m2,m1);
    }

    // test insert (fully random)
//.........这里部分代码省略.........
开发者ID:151706061,项目名称:ParaView,代码行数:101,代码来源:sparse_basic.cpp

示例10: sparse_basic

template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
  typedef typename SparseMatrixType::StorageIndex StorageIndex;
  typedef Matrix<StorageIndex,2,1> Vector2;
  
  const Index rows = ref.rows();
  const Index cols = ref.cols();
  //const Index inner = ref.innerSize();
  //const Index outer = ref.outerSize();

  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = (std::max)(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  Scalar s1 = internal::random<Scalar>();
  {
    SparseMatrixType m(rows, cols);
    DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
    DenseVector vec1 = DenseVector::Random(rows);

    std::vector<Vector2> zeroCoords;
    std::vector<Vector2> nonzeroCoords;
    initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

    // test coeff and coeffRef
    for (std::size_t i=0; i<zeroCoords.size(); ++i)
    {
      VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
      if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
        VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
    }
    VERIFY_IS_APPROX(m, refMat);

    if(!nonzeroCoords.empty()) {
      m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
      refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
    }

    VERIFY_IS_APPROX(m, refMat);

      // test assertion
      VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
      VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
    }

    // test insert (inner random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      bool call_reserve = internal::random<int>()%2;
      Index nnz = internal::random<int>(1,int(rows)/2);
      if(call_reserve)
      {
        if(internal::random<int>()%2)
          m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
        else
          m2.reserve(m2.outerSize() * nnz);
      }
      g_realloc_count = 0;
      for (Index j=0; j<cols; ++j)
      {
        for (Index k=0; k<nnz; ++k)
        {
          Index i = internal::random<Index>(0,rows-1);
          if (m1.coeff(i,j)==Scalar(0))
            m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        }
      }
      
      if(call_reserve && !SparseMatrixType::IsRowMajor)
      {
        VERIFY(g_realloc_count==0);
      }
      
      m2.finalize();
      VERIFY_IS_APPROX(m2,m1);
    }

    // test insert (fully random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      if(internal::random<int>()%2)
        m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
      for (int k=0; k<rows*cols; ++k)
      {
        Index i = internal::random<Index>(0,rows-1);
        Index j = internal::random<Index>(0,cols-1);
        if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        else
        {
          Scalar v = internal::random<Scalar>();
          m2.coeffRef(i,j) += v;
//.........这里部分代码省略.........
开发者ID:RLovelett,项目名称:eigen,代码行数:101,代码来源:sparse_basic.cpp

示例11: run

 static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) {
   int r  = internal::random(0,m2.rows()-1);
   int c1 = internal::random(0,m2.cols()-1);
   VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose());
   VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r));
 }
开发者ID:anders-dc,项目名称:cppfem,代码行数:6,代码来源:sparse_product.cpp

示例12: sparse_basic

template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
  typedef typename SparseMatrixType::StorageIndex StorageIndex;
  typedef Matrix<StorageIndex,2,1> Vector2;
  
  const Index rows = ref.rows();
  const Index cols = ref.cols();
  const Index inner = ref.innerSize();
  const Index outer = ref.outerSize();

  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = (std::max)(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  Scalar eps = 1e-6;

  Scalar s1 = internal::random<Scalar>();
  {
    SparseMatrixType m(rows, cols);
    DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
    DenseVector vec1 = DenseVector::Random(rows);

    std::vector<Vector2> zeroCoords;
    std::vector<Vector2> nonzeroCoords;
    initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);

    // test coeff and coeffRef
    for (std::size_t i=0; i<zeroCoords.size(); ++i)
    {
      VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
      if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
        VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
    }
    VERIFY_IS_APPROX(m, refMat);

    if(!nonzeroCoords.empty()) {
      m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
      refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
    }

    VERIFY_IS_APPROX(m, refMat);

      // test assertion
      VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
      VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
    }

    // test insert (inner random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      bool call_reserve = internal::random<int>()%2;
      Index nnz = internal::random<int>(1,int(rows)/2);
      if(call_reserve)
      {
        if(internal::random<int>()%2)
          m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
        else
          m2.reserve(m2.outerSize() * nnz);
      }
      g_realloc_count = 0;
      for (Index j=0; j<cols; ++j)
      {
        for (Index k=0; k<nnz; ++k)
        {
          Index i = internal::random<Index>(0,rows-1);
          if (m1.coeff(i,j)==Scalar(0))
            m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        }
      }
      
      if(call_reserve && !SparseMatrixType::IsRowMajor)
      {
        VERIFY(g_realloc_count==0);
      }
      
      m2.finalize();
      VERIFY_IS_APPROX(m2,m1);
    }

    // test insert (fully random)
    {
      DenseMatrix m1(rows,cols);
      m1.setZero();
      SparseMatrixType m2(rows,cols);
      if(internal::random<int>()%2)
        m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
      for (int k=0; k<rows*cols; ++k)
      {
        Index i = internal::random<Index>(0,rows-1);
        Index j = internal::random<Index>(0,cols-1);
        if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
          m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
        else
        {
          Scalar v = internal::random<Scalar>();
          m2.coeffRef(i,j) += v;
//.........这里部分代码省略.........
开发者ID:BRAINSia,项目名称:eigen,代码行数:101,代码来源:sparse_basic.cpp

示例13: sparse_product

template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref)
{
  const int rows = ref.rows();
  const int cols = ref.cols();
  typedef typename SparseMatrixType::Scalar Scalar;
  enum { Flags = SparseMatrixType::Flags };

  double density = std::max(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;

  // test matrix-matrix product
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows);
    DenseMatrix dm4 = DenseMatrix::Zero(rows, rows);
    SparseMatrixType m2(rows, rows);
    SparseMatrixType m3(rows, rows);
    SparseMatrixType m4(rows, rows);
    initSparse<Scalar>(density, refMat2, m2);
    initSparse<Scalar>(density, refMat3, m3);
    initSparse<Scalar>(density, refMat4, m4);
    VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
    VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
    VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
    VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());

    // sparse * dense
    VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
    VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
    VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3);
    VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());

    // dense * sparse
    VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
    VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
    VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
    VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());

    VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3);
  }

  // test matrix - diagonal product
  if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch....
  {
    DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
    DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
    DiagonalMatrix<DenseVector> d1(DenseVector::Random(rows));
    SparseMatrixType m2(rows, rows);
    SparseMatrixType m3(rows, rows);
    initSparse<Scalar>(density, refM2, m2);
    initSparse<Scalar>(density, refM3, m3);
    VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
    VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1);
    VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2);
    VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose());
  }

  // test self adjoint products
  {
    DenseMatrix b = DenseMatrix::Random(rows, rows);
    DenseMatrix x = DenseMatrix::Random(rows, rows);
    DenseMatrix refX = DenseMatrix::Random(rows, rows);
    DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
    DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
    DenseMatrix refS = DenseMatrix::Zero(rows, rows);
    SparseMatrixType mUp(rows, rows);
    SparseMatrixType mLo(rows, rows);
    SparseMatrixType mS(rows, rows);
    do {
      initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
    } while (refUp.isZero());
    refLo = refUp.transpose().conjugate();
    mLo = mUp.transpose().conjugate();
    refS = refUp + refLo;
    refS.diagonal() *= 0.5;
    mS = mUp + mLo;
    for (int k=0; k<mS.outerSize(); ++k)
      for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
        if (it.index() == k)
          it.valueRef() *= 0.5;

    VERIFY_IS_APPROX(refS.adjoint(), refS);
    VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
    VERIFY_IS_APPROX(mS, refS);
    VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
    VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
    VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
    VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
  }

}
开发者ID:CaptainFalco,项目名称:OpenPilot,代码行数:93,代码来源:eigen2_sparse_product.cpp


注:本文中的SparseMatrixType类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。