本文整理汇总了C++中SpMat::setFromTriplets方法的典型用法代码示例。如果您正苦于以下问题:C++ SpMat::setFromTriplets方法的具体用法?C++ SpMat::setFromTriplets怎么用?C++ SpMat::setFromTriplets使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SpMat
的用法示例。
在下文中一共展示了SpMat::setFromTriplets方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: operKernel
void Assembler::operKernel(EOExpr<A> oper,const MeshHandler<ORDER>& mesh,
FiniteElement<Integrator, ORDER>& fe, SpMat& OpMat)
{
std::vector<coeff> triplets;
for(auto t=0; t<mesh.num_triangles(); t++)
{
fe.updateElement(mesh.getTriangle(t));
// Vector of vertices indices (link local to global indexing system)
std::vector<UInt> identifiers;
identifiers.resize(ORDER*3);
for( auto q=0; q<ORDER*3; q++)
identifiers[q]=mesh.getTriangle(t)[q].id();
//localM=localMassMatrix(currentelem);
for(int i = 0; i < 3*ORDER; i++)
{
for(int j = 0; j < 3*ORDER; j++)
{
Real s=0;
for(int l = 0;l < Integrator::NNODES; l++)
{
s += oper(fe,i,j,l) * fe.getDet() * fe.getAreaReference()* Integrator::WEIGHTS[l];//(*)
}
triplets.push_back(coeff(identifiers[i],identifiers[j],s));
}
}
}
UInt nnodes = mesh.num_nodes();
OpMat.resize(nnodes, nnodes);
OpMat.setFromTriplets(triplets.begin(),triplets.end());
//cout<<"done!"<<endl;;
}
示例2: applyFilter
// The Real Core Function doing the actual mesh processing.
bool FilterHarmonicPlugin::applyFilter(QAction * action, MeshDocument & md, RichParameterSet & par, vcg::CallBackPos * cb)
{
switch(ID(action))
{
case FP_SCALAR_HARMONIC_FIELD :
{
typedef vcg::GridStaticPtr<CMeshO::VertexType, CMeshO::ScalarType> VertexGrid;
typedef double CoeffScalar; // TODO, when moving the code to a class make it a template (CoeffScalar = double)
typedef CMeshO::ScalarType ScalarType;
typedef CMeshO::CoordType CoordType;
typedef CMeshO::VertexType VertexType;
typedef CMeshO::FaceType FaceType;
typedef Eigen::Triplet<CoeffScalar> T;
typedef Eigen::SparseMatrix<CoeffScalar> SpMat; //sparse matrix type of double
CMeshO & m = md.mm()->cm;
vcg::tri::Allocator<CMeshO>::CompactFaceVector(m);
vcg::tri::Allocator<CMeshO>::CompactVertexVector(m);
md.mm()->updateDataMask(MeshModel::MM_FACEFACETOPO | MeshModel::MM_VERTMARK);
vcg::tri::UpdateBounding<CMeshO>::Box(m);
vcg::tri::UpdateTopology<CMeshO>::FaceFace(m);
int n = m.VN();
int fn = m.FN();
std::vector<T> coeffs; // coefficients of the system
std::map<size_t,CoeffScalar> sums; // row sum of the coefficient
SpMat laplaceMat; // the system to be solved
laplaceMat.resize(n, n);
Log("Generating coefficients.`");
cb(0, "Generating coefficients...");
vcg::tri::UpdateFlags<CMeshO>::FaceClearV(m);
// Iterate over the faces
for (size_t i = 0; i < m.face.size(); ++i)
{
CMeshO::FaceType & f = m.face[i];
if (f.IsD())
{
assert(int(i) == fn);
break; // TODO FIX the indexing of vertices
}
assert(!f.IsV());
f.SetV();
// Generate coefficients for each edge
for (int idx = 0; idx < 3; ++idx)
{
CoeffScalar weight;
WeightInfo res = ComputeWeight<FaceType, CoeffScalar>(f, idx, weight);
switch (res)
{
case EdgeAlreadyVisited : continue;
case Success : break;
case BorderEdge :
this->errorMessage = "Mesh not closed, cannot compute harmonic field on mesh containing holes or borders";
return false;
default: assert(0);
}
// if (weight < 0) weight = 0; // TODO check if negative weight may be an issue
// Add the weight to the coefficients vector for both the vertices of the considered edge
size_t v0_idx = vcg::tri::Index(m, f.V0(idx));
size_t v1_idx = vcg::tri::Index(m, f.V1(idx));
coeffs.push_back(T(v0_idx, v1_idx, -weight));
coeffs.push_back(T(v1_idx, v0_idx, -weight));
// Add the weight to the row sum
sums[v0_idx] += weight;
sums[v1_idx] += weight;
}
f.SetV();
}
// Fill the system matrix
Log("Fill the system matrix");
cb(10, "Filling the system matrix...");
laplaceMat.reserve(coeffs.size());
for (std::map<size_t,CoeffScalar>::const_iterator it = sums.begin(); it != sums.end(); ++it)
{
coeffs.push_back(T(it->first, it->first, it->second));
}
laplaceMat.setFromTriplets(coeffs.begin(), coeffs.end());
// Get the two vertices with value set
VertexGrid vg;
//.........这里部分代码省略.........
示例3: CalculateQ
void ADMMCut::CalculateQ(const VX _D, SpMat &Q)
{
// Construct Hessian Matrix for D-Qp problem
Q.resize(6 * Ns_, Nd_);
vector<Eigen::Triplet<double>> Q_list;
for (int i = 0; i < Ns_; i++)
{
int u = ptr_dualgraph_->v_orig_id(i);
WF_edge *edge = ptr_frame_->GetNeighborEdge(u);
while (edge != NULL)
{
int e_id = ptr_dualgraph_->e_dual_id(edge->ID());
if (e_id != -1)
{
int v = edge->pvert_->ID();
int j = ptr_dualgraph_->v_dual_id(v);
MX eKuu = ptr_stiff_->eKv(edge->ID());
MX eKeu = ptr_stiff_->eKe(edge->ID());
VX Fe = ptr_stiff_->Fe(edge->ID());
VX Di(6);
VX Dj(6);
if (i < Ns_ && j < Ns_)
{
for (int k = 0; k < 6; k++)
{
Di[k] = _D[6 * i + k];
Dj[k] = _D[6 * j + k];
}
}
else
{
if (i < Ns_)
{
for (int k = 0; k < 6; k++)
{
Di[k] = _D[6 * i + k];
Dj[k] = 0;
}
}
if (j < Ns_)
{
for (int k = 0; k < 6; k++)
{
Di[k] = 0;
Dj[k] = _D[6 * j + k];
}
}
}
VX Gamma = eKuu * Di + eKeu * Dj - Fe;
for (int k = 0; k < 6; k++)
{
Q_list.push_back(Triplet<double>(6 * i + k, e_id, Gamma[k]));
}
}
edge = edge->pnext_;
}
}
Q.setFromTriplets(Q_list.begin(), Q_list.end());
}