本文整理汇总了C++中SmartPtr::Copy方法的典型用法代码示例。如果您正苦于以下问题:C++ SmartPtr::Copy方法的具体用法?C++ SmartPtr::Copy怎么用?C++ SmartPtr::Copy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SmartPtr
的用法示例。
在下文中一共展示了SmartPtr::Copy方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ConstPtr
SmartPtr<const Vector> AugRestoSystemSolver::Rhs_cR(const Vector& rhs_c,
const SmartPtr<const Vector>& sigma_tilde_n_c_inv, const Vector& rhs_n_c,
const SmartPtr<const Vector>& sigma_tilde_p_c_inv, const Vector& rhs_p_c)
{
DBG_START_METH("AugRestoSystemSolver::Rhs_cR",dbg_verbosity);
SmartPtr<Vector> retVec;
std::vector<const TaggedObject*> deps(5);
std::vector<Number> scalar_deps;
deps[0] = &rhs_c;
deps[1] = GetRawPtr(sigma_tilde_n_c_inv);
deps[2] = &rhs_n_c;
deps[3] = GetRawPtr(sigma_tilde_p_c_inv);
deps[4] = &rhs_p_c;
if (!rhs_cR_cache_.GetCachedResult(retVec, deps, scalar_deps)) {
DBG_PRINT((1,"Not found in cache\n"));
retVec = rhs_c.MakeNew();
retVec->Copy(rhs_c);
SmartPtr<Vector> tmp = retVec->MakeNew();
if (IsValid(sigma_tilde_n_c_inv)) {
tmp->Copy(*sigma_tilde_n_c_inv);
tmp->ElementWiseMultiply(rhs_n_c);
retVec->Axpy(-1.0, *tmp);
}
if (IsValid(sigma_tilde_p_c_inv)) {
tmp->Copy(*sigma_tilde_p_c_inv);
tmp->ElementWiseMultiply(rhs_p_c);
retVec->Axpy(1.0, *tmp);
}
rhs_cR_cache_.AddCachedResult(retVec, deps, scalar_deps);
}
return ConstPtr(retVec);
}
示例2: AddVectorQuotientImpl
void Vector::AddVectorQuotientImpl(Number a, const Vector& z,
const Vector& s, Number c)
{
DBG_ASSERT(Dim() == z.Dim());
DBG_ASSERT(Dim() == s.Dim());
if (c==0.) {
AddOneVector(a, z, 0.);
ElementWiseDivide(s);
}
else {
SmartPtr<Vector> tmp = MakeNew();
tmp->Copy(z);
tmp->ElementWiseDivide(s);
AddOneVector(a, *tmp, c);
}
}
示例3: Jnlst
bool
RestoRestorationPhase::PerformRestoration()
{
DBG_START_METH("RestoRestorationPhase::PerformRestoration",
dbg_verbosity);
Jnlst().Printf(J_DETAILED, J_MAIN,
"Performing second level restoration phase for current constriant violation %8.2e\n", IpCq().curr_constraint_violation());
DBG_ASSERT(IpCq().curr_constraint_violation()>0.);
// Get a grip on the restoration phase NLP and obtain the pointers
// to the original NLP data
SmartPtr<RestoIpoptNLP> resto_ip_nlp =
static_cast<RestoIpoptNLP*> (&IpNLP());
DBG_ASSERT(dynamic_cast<RestoIpoptNLP*> (&IpNLP()));
SmartPtr<IpoptNLP> orig_ip_nlp =
static_cast<IpoptNLP*> (&resto_ip_nlp->OrigIpNLP());
DBG_ASSERT(dynamic_cast<IpoptNLP*> (&resto_ip_nlp->OrigIpNLP()));
// Get the current point and create a new vector for the result
SmartPtr<const CompoundVector> Ccurr_x =
static_cast<const CompoundVector*> (GetRawPtr(IpData().curr()->x()));
SmartPtr<Vector> new_x = IpData().curr()->x()->MakeNew();
SmartPtr<CompoundVector> Cnew_x =
static_cast<CompoundVector*> (GetRawPtr(new_x));
// The x values remain unchanged
SmartPtr<Vector> x = Cnew_x->GetCompNonConst(0);
x->Copy(*Ccurr_x->GetComp(0));
// ToDo in free mu mode - what to do here?
Number mu = IpData().curr_mu();
// Compute the initial values for the n and p variables for the
// equality constraints
Number rho = resto_ip_nlp->Rho();
SmartPtr<Vector> nc = Cnew_x->GetCompNonConst(1);
SmartPtr<Vector> pc = Cnew_x->GetCompNonConst(2);
SmartPtr<const Vector> cvec = orig_ip_nlp->c(*Ccurr_x->GetComp(0));
SmartPtr<Vector> a = nc->MakeNew();
SmartPtr<Vector> b = nc->MakeNew();
a->Set(mu/(2.*rho));
a->Axpy(-0.5, *cvec);
b->Copy(*cvec);
b->Scal(mu/(2.*rho));
solve_quadratic(*a, *b, *nc);
pc->Copy(*cvec);
pc->Axpy(1., *nc);
DBG_PRINT_VECTOR(2, "nc", *nc);
DBG_PRINT_VECTOR(2, "pc", *pc);
// initial values for the n and p variables for the inequality
// constraints
SmartPtr<Vector> nd = Cnew_x->GetCompNonConst(3);
SmartPtr<Vector> pd = Cnew_x->GetCompNonConst(4);
SmartPtr<Vector> dvec = pd->MakeNew();
dvec->Copy(*orig_ip_nlp->d(*Ccurr_x->GetComp(0)));
dvec->Axpy(-1., *IpData().curr()->s());
a = nd->MakeNew();
b = nd->MakeNew();
a->Set(mu/(2.*rho));
a->Axpy(-0.5, *dvec);
b->Copy(*dvec);
b->Scal(mu/(2.*rho));
solve_quadratic(*a, *b, *nd);
pd->Copy(*dvec);
pd->Axpy(1., *nd);
DBG_PRINT_VECTOR(2, "nd", *nd);
DBG_PRINT_VECTOR(2, "pd", *pd);
// Now set the trial point to the solution of the restoration phase
// s and all multipliers remain unchanged
SmartPtr<IteratesVector> new_trial = IpData().curr()->MakeNewContainer();
new_trial->Set_x(*new_x);
IpData().set_trial(new_trial);
IpData().Append_info_string("R");
return true;
}
示例4: SetInitialIterates
bool RestoIterateInitializer::SetInitialIterates()
{
DBG_START_METH("RestoIterateInitializer::SetInitialIterates",
dbg_verbosity);
// Get a grip on the restoration phase NLP and obtain the pointers
// to the original NLP data
SmartPtr<RestoIpoptNLP> resto_ip_nlp =
static_cast<RestoIpoptNLP*> (&IpNLP());
SmartPtr<IpoptNLP> orig_ip_nlp =
static_cast<IpoptNLP*> (&resto_ip_nlp->OrigIpNLP());
SmartPtr<IpoptData> orig_ip_data =
static_cast<IpoptData*> (&resto_ip_nlp->OrigIpData());
SmartPtr<IpoptCalculatedQuantities> orig_ip_cq =
static_cast<IpoptCalculatedQuantities*> (&resto_ip_nlp->OrigIpCq());
// Set the value of the barrier parameter
Number resto_mu;
resto_mu = Max(orig_ip_data->curr_mu(),
orig_ip_cq->curr_c()->Amax(),
orig_ip_cq->curr_d_minus_s()->Amax());
IpData().Set_mu(resto_mu);
Jnlst().Printf(J_DETAILED, J_INITIALIZATION,
"Initial barrier parameter resto_mu = %e\n", resto_mu);
/////////////////////////////////////////////////////////////////////
// Initialize primal varialbes //
/////////////////////////////////////////////////////////////////////
// initialize the data structures in the restoration phase NLP
IpData().InitializeDataStructures(IpNLP(), false, false, false,
false, false);
SmartPtr<Vector> new_x = IpData().curr()->x()->MakeNew();
SmartPtr<CompoundVector> Cnew_x =
static_cast<CompoundVector*> (GetRawPtr(new_x));
// Set the trial x variables from the original NLP
Cnew_x->GetCompNonConst(0)->Copy(*orig_ip_data->curr()->x());
// Compute the initial values for the n and p variables for the
// equality constraints
Number rho = resto_ip_nlp->Rho();
DBG_PRINT((1,"rho = %e\n", rho));
SmartPtr<Vector> nc = Cnew_x->GetCompNonConst(1);
SmartPtr<Vector> pc = Cnew_x->GetCompNonConst(2);
SmartPtr<const Vector> cvec = orig_ip_cq->curr_c();
DBG_PRINT_VECTOR(2, "cvec", *cvec);
SmartPtr<Vector> a = nc->MakeNew();
SmartPtr<Vector> b = nc->MakeNew();
a->Set(resto_mu/(2.*rho));
a->Axpy(-0.5, *cvec);
b->Copy(*cvec);
b->Scal(resto_mu/(2.*rho));
DBG_PRINT_VECTOR(2, "a", *a);
DBG_PRINT_VECTOR(2, "b", *b);
solve_quadratic(*a, *b, *nc);
pc->Copy(*cvec);
pc->Axpy(1., *nc);
DBG_PRINT_VECTOR(2, "nc", *nc);
DBG_PRINT_VECTOR(2, "pc", *pc);
// initial values for the n and p variables for the inequality
// constraints
SmartPtr<Vector> nd = Cnew_x->GetCompNonConst(3);
SmartPtr<Vector> pd = Cnew_x->GetCompNonConst(4);
cvec = orig_ip_cq->curr_d_minus_s();
a = nd->MakeNew();
b = nd->MakeNew();
a->Set(resto_mu/(2.*rho));
a->Axpy(-0.5, *cvec);
b->Copy(*cvec);
b->Scal(resto_mu/(2.*rho));
solve_quadratic(*a, *b, *nd);
pd->Copy(*cvec);
pd->Axpy(1., *nd);
DBG_PRINT_VECTOR(2, "nd", *nd);
DBG_PRINT_VECTOR(2, "pd", *pd);
// Leave the slacks unchanged
SmartPtr<const Vector> new_s = orig_ip_data->curr()->s();
// Now set the primal trial variables
DBG_PRINT_VECTOR(2,"new_s",*new_s);
DBG_PRINT_VECTOR(2,"new_x",*new_x);
SmartPtr<IteratesVector> trial = IpData().curr()->MakeNewContainer();
trial->Set_primal(*new_x, *new_s);
IpData().set_trial(trial);
DBG_PRINT_VECTOR(2, "resto_c", *IpCq().trial_c());
DBG_PRINT_VECTOR(2, "resto_d_minus_s", *IpCq().trial_d_minus_s());
/////////////////////////////////////////////////////////////////////
// Initialize bound multipliers //
/////////////////////////////////////////////////////////////////////
SmartPtr<Vector> new_z_L = IpData().curr()->z_L()->MakeNew();
SmartPtr<CompoundVector> Cnew_z_L =
static_cast<CompoundVector*> (GetRawPtr(new_z_L));
DBG_ASSERT(IsValid(Cnew_z_L));
//.........这里部分代码省略.........
示例5: MakeNewIteratesVectorCopy
/** Use this method to create a new iterates vector with a copy of
* all the data.
*/
SmartPtr<IteratesVector> MakeNewIteratesVectorCopy() const
{
SmartPtr<IteratesVector> ret = MakeNewIteratesVector(true);
ret->Copy(*this);
return ret;
}
示例6: InitializeStructures
//.........这里部分代码省略.........
Px_L_ = px_l_space_->MakeNewCompoundMatrix();
Px_L_->SetComp(0, 0, *orig_ip_nlp_->Px_L());
// Identities are auto-created (true flag passed into SetCompSpace)
// Px_U
Px_U_ = px_u_space_->MakeNewCompoundMatrix();
Px_U_->SetComp(0, 0, *orig_ip_nlp_->Px_U());
// Remaining matrices will be zero'ed out
// Pd_L
//Pd_L_ = orig_ip_nlp_->Pd_L();
Pd_L_ = pd_l_space_->MakeNewCompoundMatrix();
Pd_L_->SetComp(0, 0, *orig_ip_nlp_->Pd_L());
// Pd_U
//Pd_U_ = orig_ip_nlp_->Pd_U();
Pd_U_ = pd_u_space_->MakeNewCompoundMatrix();
Pd_U_->SetComp(0, 0, *orig_ip_nlp_->Pd_U());
// Getting the NLP scaling
SmartPtr<const MatrixSpace> scaled_jac_c_space;
SmartPtr<const MatrixSpace> scaled_jac_d_space;
SmartPtr<const SymMatrixSpace> scaled_h_space;
NLP_scaling()->DetermineScaling(GetRawPtr(x_space_), c_space_, d_space_, GetRawPtr(jac_c_space_),
GetRawPtr(jac_d_space_), GetRawPtr(h_space_), scaled_jac_c_space, scaled_jac_d_space, scaled_h_space, *Px_L_,
*x_L_, *Px_U_, *x_U_);
// For now we assume that no scaling is done inside the NLP_Scaling
DBG_ASSERT(scaled_jac_c_space == jac_c_space_); DBG_ASSERT(scaled_jac_d_space == jac_d_space_); DBG_ASSERT(scaled_h_space == h_space_);
/////////////////////////////////////////////////////////////////////////
// Create and initialize the vectors for the restoration phase problem //
/////////////////////////////////////////////////////////////////////////
// Vector x
SmartPtr<CompoundVector> comp_x = x_space_->MakeNewCompoundVector();
if( init_x )
{
comp_x->GetCompNonConst(0)->Copy(*orig_ip_data_->curr()->x());
comp_x->GetCompNonConst(1)->Set(1.0);
comp_x->GetCompNonConst(2)->Set(1.0);
comp_x->GetCompNonConst(3)->Set(1.0);
comp_x->GetCompNonConst(4)->Set(1.0);
}
x = GetRawPtr(comp_x);
// Vector y_c
y_c = c_space_->MakeNew();
if( init_y_c )
{
y_c->Set(0.0); // ToDo
}
// Vector y_d
y_d = d_space_->MakeNew();
if( init_y_d )
{
y_d->Set(0.0);
}
// Vector z_L
z_L = x_l_space_->MakeNew();
if( init_z_L )
{
z_L->Set(1.0);
}
// Vector z_U
z_U = x_u_space_->MakeNew();
if( init_z_U )
{
z_U->Set(1.0);
}
// Vector v_L
v_L = d_l_space_->MakeNew();
// Vector v_U
v_U = d_u_space_->MakeNew();
// Initialize other data needed by the restoration nlp. x_ref is
// the point to reference to which we based the regularization
// term
x_ref_ = orig_x_space->MakeNew();
x_ref_->Copy(*orig_ip_data_->curr()->x());
dr_x_ = orig_x_space->MakeNew();
dr_x_->Set(1.0);
SmartPtr<Vector> tmp = dr_x_->MakeNew();
tmp->Copy(*x_ref_);
dr_x_->ElementWiseMax(*tmp);
tmp->Scal(-1.);
dr_x_->ElementWiseMax(*tmp);
dr_x_->ElementWiseReciprocal();
DBG_PRINT_VECTOR(2, "dr_x_", *dr_x_);
DR_x_ = DR_x_space->MakeNewDiagMatrix();
DR_x_->SetDiag(*dr_x_);
return true;
}