本文整理汇总了C++中SkTDArray::setReserve方法的典型用法代码示例。如果您正苦于以下问题:C++ SkTDArray::setReserve方法的具体用法?C++ SkTDArray::setReserve怎么用?C++ SkTDArray::setReserve使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkTDArray
的用法示例。
在下文中一共展示了SkTDArray::setReserve方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: insert
void SkRTree::insert(const SkRect boundsArray[], int N) {
SkASSERT(0 == fCount);
SkTDArray<Branch> branches;
branches.setReserve(N);
for (int i = 0; i < N; i++) {
const SkRect& bounds = boundsArray[i];
if (bounds.isEmpty()) {
continue;
}
Branch* b = branches.push();
b->fBounds = bounds;
b->fOpIndex = i;
}
fCount = branches.count();
if (fCount) {
if (1 == fCount) {
fNodes.setReserve(1);
Node* n = this->allocateNodeAtLevel(0);
n->fNumChildren = 1;
n->fChildren[0] = branches[0];
fRoot.fSubtree = n;
fRoot.fBounds = branches[0].fBounds;
} else {
fNodes.setReserve(CountNodes(fCount, fAspectRatio));
fRoot = this->bulkLoad(&branches);
}
}
}
示例2: reserve
void SkTileGrid::reserve(int opCount) {
if (fXTiles * fYTiles == 0) {
return; // A tileless tile grid is nonsensical, but happens in at least cc_unittests.
}
// If we assume every op we're about to try to insert() falls within our grid bounds,
// then every op has to hit at least one tile. In fact, a quick scan over our small
// SKP set shows that in the average SKP, each op hits two 256x256 tiles.
// If we take those observations and further assume the ops are distributed evenly
// across the picture, we get this guess for number of ops per tile:
const int opsPerTileGuess = (2 * opCount) / (fXTiles * fYTiles);
for (SkTDArray<unsigned>* tile = fTiles; tile != fTiles + (fXTiles * fYTiles); tile++) {
tile->setReserve(opsPerTileGuess);
}
// In practice, this heuristic means we'll temporarily allocate about 30% more bytes
// than if we made no setReserve() calls, but time spent in insert() drops by about 50%.
}
示例3: GeneratePageTree
// static
void SkPDFPage::GeneratePageTree(const SkTDArray<SkPDFPage*>& pages,
SkPDFCatalog* catalog,
SkTDArray<SkPDFDict*>* pageTree,
SkPDFDict** rootNode) {
// PDF wants a tree describing all the pages in the document. We arbitrary
// choose 8 (kNodeSize) as the number of allowed children. The internal
// nodes have type "Pages" with an array of children, a parent pointer, and
// the number of leaves below the node as "Count." The leaves are passed
// into the method, have type "Page" and need a parent pointer. This method
// builds the tree bottom up, skipping internal nodes that would have only
// one child.
static const int kNodeSize = 8;
SkAutoTUnref<SkPDFName> kidsName(new SkPDFName("Kids"));
SkAutoTUnref<SkPDFName> countName(new SkPDFName("Count"));
SkAutoTUnref<SkPDFName> parentName(new SkPDFName("Parent"));
// curNodes takes a reference to its items, which it passes to pageTree.
SkTDArray<SkPDFDict*> curNodes;
curNodes.setReserve(pages.count());
for (int i = 0; i < pages.count(); i++) {
SkSafeRef(pages[i]);
curNodes.push(pages[i]);
}
// nextRoundNodes passes its references to nodes on to curNodes.
SkTDArray<SkPDFDict*> nextRoundNodes;
nextRoundNodes.setReserve((pages.count() + kNodeSize - 1)/kNodeSize);
int treeCapacity = kNodeSize;
do {
for (int i = 0; i < curNodes.count(); ) {
if (i > 0 && i + 1 == curNodes.count()) {
nextRoundNodes.push(curNodes[i]);
break;
}
SkPDFDict* newNode = new SkPDFDict("Pages");
SkAutoTUnref<SkPDFObjRef> newNodeRef(new SkPDFObjRef(newNode));
SkAutoTUnref<SkPDFArray> kids(new SkPDFArray);
kids->reserve(kNodeSize);
int count = 0;
for (; i < curNodes.count() && count < kNodeSize; i++, count++) {
curNodes[i]->insert(parentName.get(), newNodeRef.get());
kids->append(new SkPDFObjRef(curNodes[i]))->unref();
// TODO(vandebo): put the objects in strict access order.
// Probably doesn't matter because they are so small.
if (curNodes[i] != pages[0]) {
pageTree->push(curNodes[i]); // Transfer reference.
catalog->addObject(curNodes[i], false);
} else {
SkSafeUnref(curNodes[i]);
catalog->addObject(curNodes[i], true);
}
}
// treeCapacity is the number of leaf nodes possible for the
// current set of subtrees being generated. (i.e. 8, 64, 512, ...).
// It is hard to count the number of leaf nodes in the current
// subtree. However, by construction, we know that unless it's the
// last subtree for the current depth, the leaf count will be
// treeCapacity, otherwise it's what ever is left over after
// consuming treeCapacity chunks.
int pageCount = treeCapacity;
if (i == curNodes.count()) {
pageCount = ((pages.count() - 1) % treeCapacity) + 1;
}
newNode->insert(countName.get(), new SkPDFInt(pageCount))->unref();
newNode->insert(kidsName.get(), kids.get());
nextRoundNodes.push(newNode); // Transfer reference.
}
curNodes = nextRoundNodes;
nextRoundNodes.rewind();
treeCapacity *= kNodeSize;
} while (curNodes.count() > 1);
pageTree->push(curNodes[0]); // Transfer reference.
catalog->addObject(curNodes[0], false);
if (rootNode) {
*rootNode = curNodes[0];
}
}
示例4: render
bool TiledPictureRenderer::render(SkBitmap** out) {
SkASSERT(fPicture != NULL);
if (NULL == fPicture) {
return false;
}
SkBitmap bitmap;
if (out) {
*out = SkNEW(SkBitmap);
setup_bitmap(*out, SkScalarCeilToInt(fPicture->cullRect().width()),
SkScalarCeilToInt(fPicture->cullRect().height()));
setup_bitmap(&bitmap, fTileWidth, fTileHeight);
}
bool success = true;
if (fUseMultiPictureDraw) {
SkMultiPictureDraw mpd;
SkTDArray<SkSurface*> surfaces;
surfaces.setReserve(fTileRects.count());
// Create a separate SkSurface/SkCanvas for each tile along with a
// translated version of the skp (to mimic Chrome's behavior) and
// feed all such pairs to the MultiPictureDraw.
for (int i = 0; i < fTileRects.count(); ++i) {
SkImageInfo ii = fCanvas->imageInfo().makeWH(fTileRects[i].width(),
fTileRects[i].height());
*surfaces.append() = fCanvas->newSurface(ii);
surfaces[i]->getCanvas()->setMatrix(fCanvas->getTotalMatrix());
SkPictureRecorder recorder;
SkRTreeFactory bbhFactory;
SkCanvas* c = recorder.beginRecording(SkIntToScalar(fTileRects[i].width()),
SkIntToScalar(fTileRects[i].height()),
&bbhFactory,
SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag);
c->save();
SkMatrix mat;
mat.setTranslate(-SkIntToScalar(fTileRects[i].fLeft),
-SkIntToScalar(fTileRects[i].fTop));
c->setMatrix(mat);
c->drawPicture(fPicture);
c->restore();
SkAutoTUnref<SkPicture> xlatedPicture(recorder.endRecording());
mpd.add(surfaces[i]->getCanvas(), xlatedPicture);
}
// Render all the buffered SkCanvases/SkPictures
mpd.draw();
// Sort out the results and cleanup the allocated surfaces
for (int i = 0; i < fTileRects.count(); ++i) {
success &= this->postRender(surfaces[i]->getCanvas(), fTileRects[i], &bitmap, out, i);
surfaces[i]->unref();
}
} else {
for (int i = 0; i < fTileRects.count(); ++i) {
draw_tile_to_canvas(fCanvas, fTileRects[i], fPicture);
success &= this->postRender(fCanvas, fTileRects[i], &bitmap, out, i);
}
}
return success;
}
示例5: GeneratePageTree
// static
void SkPDFPage::GeneratePageTree(const SkTDArray<SkPDFPage*>& pages,
SkPDFCatalog* catalog,
SkTDArray<SkPDFDict*>* pageTree,
SkPDFDict** rootNode) {
// PDF wants a tree describing all the pages in the document. We arbitrary
// choose 8 (kNodeSize) as the number of allowed children. The internal
// nodes have type "Pages" with an array of children, a parent pointer, and
// the number of leaves below the node as "Count." The leaves are passed
// into the method, have type "Page" and need a parent pointer. This method
// builds the tree bottom up, skipping internal nodes that would have only
// one child.
static const int kNodeSize = 8;
SkRefPtr<SkPDFName> kidsName = new SkPDFName("Kids");
kidsName->unref(); // SkRefPtr and new both took a reference.
SkRefPtr<SkPDFName> countName = new SkPDFName("Count");
countName->unref(); // SkRefPtr and new both took a reference.
SkRefPtr<SkPDFName> parentName = new SkPDFName("Parent");
parentName->unref(); // SkRefPtr and new both took a reference.
// curNodes takes a reference to its items, which it passes to pageTree.
SkTDArray<SkPDFDict*> curNodes;
curNodes.setReserve(pages.count());
for (int i = 0; i < pages.count(); i++) {
SkSafeRef(pages[i]);
curNodes.push(pages[i]);
}
// nextRoundNodes passes its references to nodes on to curNodes.
SkTDArray<SkPDFDict*> nextRoundNodes;
nextRoundNodes.setReserve((pages.count() + kNodeSize - 1)/kNodeSize);
int treeCapacity = kNodeSize;
do {
for (int i = 0; i < curNodes.count(); ) {
if (i > 0 && i + 1 == curNodes.count()) {
nextRoundNodes.push(curNodes[i]);
break;
}
SkPDFDict* newNode = new SkPDFDict("Pages");
SkRefPtr<SkPDFObjRef> newNodeRef = new SkPDFObjRef(newNode);
newNodeRef->unref(); // SkRefPtr and new both took a reference.
SkRefPtr<SkPDFArray> kids = new SkPDFArray;
kids->unref(); // SkRefPtr and new both took a reference.
kids->reserve(kNodeSize);
int count = 0;
for (; i < curNodes.count() && count < kNodeSize; i++, count++) {
curNodes[i]->insert(parentName.get(), newNodeRef.get());
kids->append(new SkPDFObjRef(curNodes[i]))->unref();
// TODO(vandebo): put the objects in strict access order.
// Probably doesn't matter because they are so small.
if (curNodes[i] != pages[0]) {
pageTree->push(curNodes[i]); // Transfer reference.
catalog->addObject(curNodes[i], false);
} else {
SkSafeUnref(curNodes[i]);
catalog->addObject(curNodes[i], true);
}
}
newNode->insert(kidsName.get(), kids.get());
int pageCount = treeCapacity;
if (count < kNodeSize) {
pageCount = pages.count() % treeCapacity;
}
newNode->insert(countName.get(), new SkPDFInt(pageCount))->unref();
nextRoundNodes.push(newNode); // Transfer reference.
}
curNodes = nextRoundNodes;
nextRoundNodes.rewind();
treeCapacity *= kNodeSize;
} while (curNodes.count() > 1);
pageTree->push(curNodes[0]); // Transfer reference.
catalog->addObject(curNodes[0], false);
if (rootNode) {
*rootNode = curNodes[0];
}
}