本文整理汇总了C++中SkTArray::begin方法的典型用法代码示例。如果您正苦于以下问题:C++ SkTArray::begin方法的具体用法?C++ SkTArray::begin怎么用?C++ SkTArray::begin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkTArray
的用法示例。
在下文中一共展示了SkTArray::begin方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ASSERT
DEF_TEST(GrGLSLPrettyPrint, r) {
SkTArray<const char*> testStr;
SkTArray<int> lengths;
testStr.push_back(input1.c_str());
lengths.push_back((int)input1.size());
testStr.push_back(input2.c_str());
lengths.push_back((int)input2.size());
testStr.push_back(input3.c_str());
lengths.push_back((int)input3.size());
testStr.push_back(input4.c_str());
lengths.push_back((int)input4.size());
testStr.push_back(input5.c_str());
lengths.push_back((int)input5.size());
testStr.push_back(input6.c_str());
lengths.push_back((int)input6.size());
SkString test = GrGLSLPrettyPrint::PrettyPrintGLSL(testStr.begin(), lengths.begin(),
testStr.count(), true);
ASSERT(output1 == test);
testStr.reset();
lengths.reset();
testStr.push_back(neg1.c_str());
lengths.push_back((int)neg1.size());
testStr.push_back(neg2.c_str());
lengths.push_back((int)neg2.size());
testStr.push_back(neg3.c_str());
lengths.push_back((int)neg3.size());
// Just test we don't crash with garbage input
ASSERT(GrGLSLPrettyPrint::PrettyPrintGLSL(testStr.begin(), lengths.begin(), 1,
true).c_str() != NULL);
}
示例2: handle_cmd
static void handle_cmd(struct android_app* app, int32_t cmd) {
struct VisualBenchState* state = (struct VisualBenchState*)app->userData;
switch (cmd) {
case APP_CMD_INIT_WINDOW:
// The window is being shown, get it ready.
if (state->fApp->window != nullptr && kInit_State == state->fState) {
// drain any events that occurred before |window| was assigned.
while (SkEvent::ProcessEvent());
// Start normal Skia sequence
application_init();
SkTArray<const char*> args;
args.push_back("VisualBench");
for (int i = 0; i < state->fFlags.count(); i++) {
SkDebugf(state->fFlags[i].c_str());
args.push_back(state->fFlags[i].c_str());
}
state->fWindow = create_sk_window((void*)state->fApp->window,
args.count(),
const_cast<char**>(args.begin()));
state->fWindow->forceInvalAll();
state->fState = kAnimate_State;
}
break;
case APP_CMD_TERM_WINDOW:
state->fState = kDestroyRequested_State;
break;
}
}
示例3: teardown
void GLCpuPosInstancedArraysBench::teardown(const GrGLInterface* gl) {
GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, 0));
GR_GL_CALL(gl, BindVertexArray(0));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, 0));
GR_GL_CALL(gl, DeleteTextures(1, &fTexture));
GR_GL_CALL(gl, DeleteProgram(fProgram));
GR_GL_CALL(gl, DeleteBuffers(fBuffers.count(), fBuffers.begin()));
GR_GL_CALL(gl, DeleteVertexArrays(1, &fVAO));
fBuffers.reset();
}
示例4: MakeContourList
void MakeContourList(SkTArray<SkOpContour>& contours, SkTArray<SkOpContour*, true>& list,
bool evenOdd, bool oppEvenOdd) {
int count = contours.count();
if (count == 0) {
return;
}
for (int index = 0; index < count; ++index) {
SkOpContour& contour = contours[index];
contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd);
list.push_back(&contour);
}
SkTQSort<SkOpContour>(list.begin(), list.end() - 1);
}
示例5: GetJMethod
JNIEXPORT void JNICALL Java_com_skia_SkiaSampleRenderer_init(JNIEnv* env,
jobject thiz, jobject jsampleActivity, jint msaaSampleCount)
{
// setup jni hooks to the java activity
gActivityGlue.m_env = env;
jclass clazz = env->FindClass("com/skia/SkiaSampleActivity");
gActivityGlue.m_obj = env->NewWeakGlobalRef(jsampleActivity);
gActivityGlue.m_setTitle = GetJMethod(env, clazz, "setTitle", "(Ljava/lang/CharSequence;)V");
gActivityGlue.m_setSlideList = GetJMethod(env, clazz, "setSlideList", "([Ljava/lang/String;)V");
gActivityGlue.m_addToDownloads = GetJMethod(env, clazz, "addToDownloads",
"(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V");
env->DeleteLocalRef(clazz);
// setup jni hooks to the java renderer
clazz = env->FindClass("com/skia/SkiaSampleRenderer");
gWindowGlue.m_obj = env->NewWeakGlobalRef(thiz);
gWindowGlue.m_inval = GetJMethod(env, clazz, "requestRender", "()V");
gWindowGlue.m_queueSkEvent = GetJMethod(env, clazz, "queueSkEvent", "()V");
gWindowGlue.m_startTimer = GetJMethod(env, clazz, "startTimer", "(I)V");
gWindowGlue.m_getMSAASampleCount = GetJMethod(env, clazz, "getMSAASampleCount", "()I");
env->DeleteLocalRef(clazz);
application_init();
SkTArray<const char*> args;
args.push_back("SampleApp");
// TODO: push ability to select skp dir into the UI
args.push_back("--pictureDir");
args.push_back("/sdcard/skiabot/skia_skp");
SkString msaaSampleCountString;
if (msaaSampleCount > 0) {
args.push_back("--msaa");
msaaSampleCountString.appendS32(static_cast<uint32_t>(msaaSampleCount));
args.push_back(msaaSampleCountString.c_str());
}
gWindow = new SampleWindow(NULL, args.count(), const_cast<char**>(args.begin()), NULL);
// send the list of slides up to the activity
const int slideCount = gWindow->sampleCount();
jobjectArray slideList = env->NewObjectArray(slideCount, env->FindClass("java/lang/String"), env->NewStringUTF(""));
for (int i = 0; i < slideCount; i++) {
jstring slideTitle = env->NewStringUTF(gWindow->getSampleTitle(i).c_str());
env->SetObjectArrayElement(slideList, i, slideTitle);
env->DeleteLocalRef(slideTitle);
}
env->CallVoidMethod(gActivityGlue.m_obj, gActivityGlue.m_setSlideList, slideList);
env->DeleteLocalRef(slideList);
}
示例6: Assemble
/*
check start and end of each contour
if not the same, record them
match them up
connect closest
reassemble contour pieces into new path
*/
void Assemble(const SkPathWriter& path, SkPathWriter* simple) {
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("%s\n", __FUNCTION__);
#endif
SkTArray<SkOpContour> contours;
SkOpEdgeBuilder builder(path, contours);
builder.finish();
int count = contours.count();
int outer;
SkTArray<int, true> runs(count); // indices of partial contours
for (outer = 0; outer < count; ++outer) {
const SkOpContour& eContour = contours[outer];
const SkPoint& eStart = eContour.start();
const SkPoint& eEnd = eContour.end();
#if DEBUG_ASSEMBLE
SkDebugf("%s contour", __FUNCTION__);
if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
SkDebugf("[%d]", runs.count());
} else {
SkDebugf(" ");
}
SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
#endif
if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) {
eContour.toPath(simple);
continue;
}
runs.push_back(outer);
}
count = runs.count();
if (count == 0) {
return;
}
SkTArray<int, true> sLink, eLink;
sLink.push_back_n(count);
eLink.push_back_n(count);
int rIndex, iIndex;
for (rIndex = 0; rIndex < count; ++rIndex) {
sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
}
const int ends = count * 2; // all starts and ends
const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2
SkTArray<double, true> distances;
distances.push_back_n(entries);
for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
outer = runs[rIndex >> 1];
const SkOpContour& oContour = contours[outer];
const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start();
const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
* ends - rIndex - 1;
for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
int inner = runs[iIndex >> 1];
const SkOpContour& iContour = contours[inner];
const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start();
double dx = iPt.fX - oPt.fX;
double dy = iPt.fY - oPt.fY;
double dist = dx * dx + dy * dy;
distances[row + iIndex] = dist; // oStart distance from iStart
}
}
SkTArray<int, true> sortedDist;
sortedDist.push_back_n(entries);
for (rIndex = 0; rIndex < entries; ++rIndex) {
sortedDist[rIndex] = rIndex;
}
SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin()));
int remaining = count; // number of start/end pairs
for (rIndex = 0; rIndex < entries; ++rIndex) {
int pair = sortedDist[rIndex];
int row = pair / ends;
int col = pair - row * ends;
int thingOne = row < col ? row : ends - row - 2;
int ndxOne = thingOne >> 1;
bool endOne = thingOne & 1;
int* linkOne = endOne ? eLink.begin() : sLink.begin();
if (linkOne[ndxOne] != SK_MaxS32) {
continue;
}
int thingTwo = row < col ? col : ends - row + col - 1;
int ndxTwo = thingTwo >> 1;
bool endTwo = thingTwo & 1;
int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
if (linkTwo[ndxTwo] != SK_MaxS32) {
continue;
}
SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
bool flip = endOne == endTwo;
linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
if (!--remaining) {
break;
}
//.........这里部分代码省略.........
示例7: Create
// Create the base Vulkan objects needed by the GrVkGpu object
const GrVkBackendContext* GrVkBackendContext::Create(uint32_t* presentQueueIndexPtr,
bool(*canPresent)(VkInstance, VkPhysicalDevice, uint32_t queueIndex)) {
VkPhysicalDevice physDev;
VkDevice device;
VkInstance inst;
VkResult err;
const VkApplicationInfo app_info = {
VK_STRUCTURE_TYPE_APPLICATION_INFO, // sType
nullptr, // pNext
"vktest", // pApplicationName
0, // applicationVersion
"vktest", // pEngineName
0, // engineVerison
kGrVkMinimumVersion, // apiVersion
};
GrVkExtensions extensions;
extensions.initInstance(kGrVkMinimumVersion);
SkTArray<const char*> instanceLayerNames;
SkTArray<const char*> instanceExtensionNames;
uint32_t extensionFlags = 0;
#ifdef ENABLE_VK_LAYERS
for (size_t i = 0; i < SK_ARRAY_COUNT(kDebugLayerNames); ++i) {
if (extensions.hasInstanceLayer(kDebugLayerNames[i])) {
instanceLayerNames.push_back(kDebugLayerNames[i]);
}
}
if (extensions.hasInstanceExtension(VK_EXT_DEBUG_REPORT_EXTENSION_NAME)) {
instanceExtensionNames.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
extensionFlags |= kEXT_debug_report_GrVkExtensionFlag;
}
#endif
if (extensions.hasInstanceExtension(VK_KHR_SURFACE_EXTENSION_NAME)) {
instanceExtensionNames.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
extensionFlags |= kKHR_surface_GrVkExtensionFlag;
}
if (extensions.hasInstanceExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME)) {
instanceExtensionNames.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
extensionFlags |= kKHR_swapchain_GrVkExtensionFlag;
}
#ifdef SK_BUILD_FOR_WIN
if (extensions.hasInstanceExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME)) {
instanceExtensionNames.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
extensionFlags |= kKHR_win32_surface_GrVkExtensionFlag;
}
#elif SK_BUILD_FOR_ANDROID
if (extensions.hasInstanceExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME)) {
instanceExtensionNames.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME);
extensionFlags |= kKHR_android_surface_GrVkExtensionFlag;
}
#elif SK_BUILD_FOR_UNIX
if (extensions.hasInstanceExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME)) {
instanceExtensionNames.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME);
extensionFlags |= kKHR_xlib_surface_GrVkExtensionFlag;
}
#endif
const VkInstanceCreateInfo instance_create = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // sType
nullptr, // pNext
0, // flags
&app_info, // pApplicationInfo
(uint32_t) instanceLayerNames.count(), // enabledLayerNameCount
instanceLayerNames.begin(), // ppEnabledLayerNames
(uint32_t) instanceExtensionNames.count(), // enabledExtensionNameCount
instanceExtensionNames.begin(), // ppEnabledExtensionNames
};
err = vkCreateInstance(&instance_create, nullptr, &inst);
if (err < 0) {
SkDebugf("vkCreateInstance failed: %d\n", err);
return nullptr;
}
uint32_t gpuCount;
err = vkEnumeratePhysicalDevices(inst, &gpuCount, nullptr);
if (err) {
SkDebugf("vkEnumeratePhysicalDevices failed: %d\n", err);
vkDestroyInstance(inst, nullptr);
return nullptr;
}
SkASSERT(gpuCount > 0);
// Just returning the first physical device instead of getting the whole array.
// TODO: find best match for our needs
gpuCount = 1;
err = vkEnumeratePhysicalDevices(inst, &gpuCount, &physDev);
if (err) {
SkDebugf("vkEnumeratePhysicalDevices failed: %d\n", err);
vkDestroyInstance(inst, nullptr);
return nullptr;
}
// query to get the initial queue props size
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physDev, &queueCount, nullptr);
SkASSERT(queueCount >= 1);
//.........这里部分代码省略.........
示例8: teardown
void GLCpuPosInstancedArraysBench::teardown(const GrGLInterface* gl) {
GR_GL_CALL(gl, DeleteProgram(fProgram));
GR_GL_CALL(gl, DeleteBuffers(fBuffers.count(), fBuffers.begin()));
GR_GL_CALL(gl, DeleteVertexArrays(1, &fVAO));
}
示例9: onDrawPosText
void GrDistanceFieldTextContext::onDrawPosText(GrRenderTarget* rt, const GrClip& clip,
const GrPaint& paint,
const SkPaint& skPaint, const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
const SkScalar pos[], int scalarsPerPosition,
const SkPoint& offset,
const SkIRect& regionClipBounds) {
SkASSERT(byteLength == 0 || text != NULL);
SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition);
// nothing to draw
if (text == NULL || byteLength == 0 /* no raster clip? || fRC->isEmpty()*/) {
return;
}
fViewMatrix = viewMatrix;
this->init(rt, clip, paint, skPaint, regionClipBounds);
SkDrawCacheProc glyphCacheProc = fSkPaint.getDrawCacheProc();
SkAutoGlyphCacheNoGamma autoCache(fSkPaint, &fDeviceProperties, NULL);
SkGlyphCache* cache = autoCache.getCache();
GrFontScaler* fontScaler = GetGrFontScaler(cache);
int numGlyphs = fSkPaint.textToGlyphs(text, byteLength, NULL);
fTotalVertexCount = kVerticesPerGlyph*numGlyphs;
const char* stop = text + byteLength;
SkTArray<char> fallbackTxt;
SkTArray<SkScalar> fallbackPos;
if (SkPaint::kLeft_Align == fSkPaint.getTextAlign()) {
while (text < stop) {
const char* lastText = text;
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkScalar x = offset.x() + pos[0];
SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0);
if (!this->appendGlyph(GrGlyph::Pack(glyph.getGlyphID(),
glyph.getSubXFixed(),
glyph.getSubYFixed(),
GrGlyph::kDistance_MaskStyle),
x, y, fontScaler)) {
// couldn't append, send to fallback
fallbackTxt.push_back_n(SkToInt(text-lastText), lastText);
fallbackPos.push_back(pos[0]);
if (2 == scalarsPerPosition) {
fallbackPos.push_back(pos[1]);
}
}
}
pos += scalarsPerPosition;
}
} else {
SkScalar alignMul = SkPaint::kCenter_Align == fSkPaint.getTextAlign() ? SK_ScalarHalf
: SK_Scalar1;
while (text < stop) {
const char* lastText = text;
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkScalar x = offset.x() + pos[0];
SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0);
SkScalar advanceX = SkFixedToScalar(glyph.fAdvanceX)*alignMul*fTextRatio;
SkScalar advanceY = SkFixedToScalar(glyph.fAdvanceY)*alignMul*fTextRatio;
if (!this->appendGlyph(GrGlyph::Pack(glyph.getGlyphID(),
glyph.getSubXFixed(),
glyph.getSubYFixed(),
GrGlyph::kDistance_MaskStyle),
x - advanceX, y - advanceY, fontScaler)) {
// couldn't append, send to fallback
fallbackTxt.push_back_n(SkToInt(text-lastText), lastText);
fallbackPos.push_back(pos[0]);
if (2 == scalarsPerPosition) {
fallbackPos.push_back(pos[1]);
}
}
}
pos += scalarsPerPosition;
}
}
this->finish();
if (fallbackTxt.count() > 0) {
fFallbackTextContext->drawPosText(rt, clip, paint, skPaint, viewMatrix,
fallbackTxt.begin(), fallbackTxt.count(),
fallbackPos.begin(), scalarsPerPosition, offset,
regionClipBounds);
}
}
示例10: onDrawText
void GrDistanceFieldTextContext::onDrawText(GrRenderTarget* rt, const GrClip& clip,
const GrPaint& paint,
const SkPaint& skPaint, const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
SkScalar x, SkScalar y,
const SkIRect& regionClipBounds) {
SkASSERT(byteLength == 0 || text != NULL);
// nothing to draw
if (text == NULL || byteLength == 0) {
return;
}
fViewMatrix = viewMatrix;
SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc();
SkAutoGlyphCache autoCache(skPaint, &fDeviceProperties, NULL);
SkGlyphCache* cache = autoCache.getCache();
SkTArray<SkScalar> positions;
const char* textPtr = text;
SkFixed stopX = 0;
SkFixed stopY = 0;
SkFixed origin;
switch (skPaint.getTextAlign()) {
case SkPaint::kRight_Align: origin = SK_Fixed1; break;
case SkPaint::kCenter_Align: origin = SK_FixedHalf; break;
case SkPaint::kLeft_Align: origin = 0; break;
default: SkFAIL("Invalid paint origin"); return;
}
SkAutoKern autokern;
const char* stop = text + byteLength;
while (textPtr < stop) {
// don't need x, y here, since all subpixel variants will have the
// same advance
const SkGlyph& glyph = glyphCacheProc(cache, &textPtr, 0, 0);
SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph);
positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width)));
SkFixed height = glyph.fAdvanceY;
positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height)));
stopX += width;
stopY += height;
}
SkASSERT(textPtr == stop);
// now adjust starting point depending on alignment
SkScalar alignX = SkFixedToScalar(stopX);
SkScalar alignY = SkFixedToScalar(stopY);
if (skPaint.getTextAlign() == SkPaint::kCenter_Align) {
alignX = SkScalarHalf(alignX);
alignY = SkScalarHalf(alignY);
} else if (skPaint.getTextAlign() == SkPaint::kLeft_Align) {
alignX = 0;
alignY = 0;
}
x -= alignX;
y -= alignY;
SkPoint offset = SkPoint::Make(x, y);
this->onDrawPosText(rt, clip, paint, skPaint, viewMatrix, text, byteLength, positions.begin(),
2, offset, regionClipBounds);
}
示例11: DrawDFText
void GrTextUtils::DrawDFText(GrAtlasTextBlob* blob, int runIndex,
GrBatchFontCache* fontCache, const SkSurfaceProps& props,
const SkPaint& skPaint, GrColor color,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
SkScalar x, SkScalar y) {
SkASSERT(byteLength == 0 || text != nullptr);
// nothing to draw
if (text == nullptr || byteLength == 0) {
return;
}
SkPaint::GlyphCacheProc glyphCacheProc = skPaint.getGlyphCacheProc(true);
SkAutoDescriptor desc;
skPaint.getScalerContextDescriptor(&desc, props, SkPaint::FakeGamma::Off, nullptr);
SkGlyphCache* origPaintCache = SkGlyphCache::DetachCache(skPaint.getTypeface(),
desc.getDesc());
SkTArray<SkScalar> positions;
const char* textPtr = text;
SkFixed stopX = 0;
SkFixed stopY = 0;
SkFixed origin = 0;
switch (skPaint.getTextAlign()) {
case SkPaint::kRight_Align: origin = SK_Fixed1; break;
case SkPaint::kCenter_Align: origin = SK_FixedHalf; break;
case SkPaint::kLeft_Align: origin = 0; break;
}
SkAutoKern autokern;
const char* stop = text + byteLength;
while (textPtr < stop) {
// don't need x, y here, since all subpixel variants will have the
// same advance
const SkGlyph& glyph = glyphCacheProc(origPaintCache, &textPtr);
SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph);
positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width)));
SkFixed height = glyph.fAdvanceY;
positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height)));
stopX += width;
stopY += height;
}
SkASSERT(textPtr == stop);
SkGlyphCache::AttachCache(origPaintCache);
// now adjust starting point depending on alignment
SkScalar alignX = SkFixedToScalar(stopX);
SkScalar alignY = SkFixedToScalar(stopY);
if (skPaint.getTextAlign() == SkPaint::kCenter_Align) {
alignX = SkScalarHalf(alignX);
alignY = SkScalarHalf(alignY);
} else if (skPaint.getTextAlign() == SkPaint::kLeft_Align) {
alignX = 0;
alignY = 0;
}
x -= alignX;
y -= alignY;
SkPoint offset = SkPoint::Make(x, y);
DrawDFPosText(blob, runIndex, fontCache, props, skPaint, color, viewMatrix, text, byteLength,
positions.begin(), 2, offset);
}
示例12: Op
bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) {
#if DEBUG_SHOW_TEST_NAME
char* debugName = DEBUG_FILENAME_STRING;
if (debugName && debugName[0]) {
SkPathOpsDebug::BumpTestName(debugName);
SkPathOpsDebug::ShowPath(one, two, op, debugName);
}
#endif
op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()];
SkPath::FillType fillType = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()]
? SkPath::kInverseEvenOdd_FillType : SkPath::kEvenOdd_FillType;
const SkPath* minuend = &one;
const SkPath* subtrahend = &two;
if (op == kReverseDifference_PathOp) {
minuend = &two;
subtrahend = &one;
op = kDifference_PathOp;
}
#if DEBUG_SORT || DEBUG_SWAP_TOP
SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault;
#endif
// turn path into list of segments
SkTArray<SkOpContour> contours;
// FIXME: add self-intersecting cubics' T values to segment
SkOpEdgeBuilder builder(*minuend, contours);
const int xorMask = builder.xorMask();
builder.addOperand(*subtrahend);
if (!builder.finish()) {
return false;
}
result->reset();
result->setFillType(fillType);
const int xorOpMask = builder.xorMask();
SkTArray<SkOpContour*, true> contourList;
MakeContourList(contours, contourList, xorMask == kEvenOdd_PathOpsMask,
xorOpMask == kEvenOdd_PathOpsMask);
SkOpContour** currentPtr = contourList.begin();
if (!currentPtr) {
return true;
}
SkOpContour** listEnd = contourList.end();
// find all intersections between segments
do {
SkOpContour** nextPtr = currentPtr;
SkOpContour* current = *currentPtr++;
if (current->containsCubics()) {
AddSelfIntersectTs(current);
}
SkOpContour* next;
do {
next = *nextPtr++;
} while (AddIntersectTs(current, next) && nextPtr != listEnd);
} while (currentPtr != listEnd);
// eat through coincident edges
int total = 0;
int index;
for (index = 0; index < contourList.count(); ++index) {
total += contourList[index]->segments().count();
}
HandleCoincidence(&contourList, total);
// construct closed contours
SkPathWriter wrapper(*result);
bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper);
{ // if some edges could not be resolved, assemble remaining fragments
SkPath temp;
temp.setFillType(fillType);
SkPathWriter assembled(temp);
Assemble(wrapper, &assembled);
*result = *assembled.nativePath();
result->setFillType(fillType);
}
return true;
}
示例13: WriteBitmapToKTX
bool SkKTXFile::WriteBitmapToKTX(SkWStream* stream, const SkBitmap& bitmap) {
const SkColorType ct = bitmap.colorType();
SkAutoLockPixels alp(bitmap);
const int width = bitmap.width();
const int height = bitmap.width();
const uint8_t* src = reinterpret_cast<uint8_t*>(bitmap.getPixels());
if (NULL == bitmap.getPixels()) {
return false;
}
// First thing's first, write out the magic identifier and endianness...
if (!stream->write(KTX_FILE_IDENTIFIER, KTX_FILE_IDENTIFIER_SIZE) ||
!stream->write(&kKTX_ENDIANNESS_CODE, 4)) {
return false;
}
// Collect our key/value pairs...
SkTArray<KeyValue> kvPairs;
// Next, write the header based on the bitmap's config.
Header hdr;
switch (ct) {
case kIndex_8_SkColorType:
// There is a compressed format for this, but we don't support it yet.
SkDebugf("Writing indexed bitmap to KTX unsupported.\n");
// VVV fall through VVV
default:
case kUnknown_SkColorType:
// Bitmap hasn't been configured.
return false;
case kAlpha_8_SkColorType:
hdr.fGLType = GR_GL_UNSIGNED_BYTE;
hdr.fGLTypeSize = 1;
hdr.fGLFormat = GR_GL_RED;
hdr.fGLInternalFormat = GR_GL_R8;
hdr.fGLBaseInternalFormat = GR_GL_RED;
break;
case kRGB_565_SkColorType:
hdr.fGLType = GR_GL_UNSIGNED_SHORT_5_6_5;
hdr.fGLTypeSize = 2;
hdr.fGLFormat = GR_GL_RGB;
hdr.fGLInternalFormat = GR_GL_RGB;
hdr.fGLBaseInternalFormat = GR_GL_RGB;
break;
case kARGB_4444_SkColorType:
hdr.fGLType = GR_GL_UNSIGNED_SHORT_4_4_4_4;
hdr.fGLTypeSize = 2;
hdr.fGLFormat = GR_GL_RGBA;
hdr.fGLInternalFormat = GR_GL_RGBA4;
hdr.fGLBaseInternalFormat = GR_GL_RGBA;
kvPairs.push_back(CreateKeyValue("KTXPremultipliedAlpha", "True"));
break;
case kN32_SkColorType:
hdr.fGLType = GR_GL_UNSIGNED_BYTE;
hdr.fGLTypeSize = 1;
hdr.fGLFormat = GR_GL_RGBA;
hdr.fGLInternalFormat = GR_GL_RGBA8;
hdr.fGLBaseInternalFormat = GR_GL_RGBA;
kvPairs.push_back(CreateKeyValue("KTXPremultipliedAlpha", "True"));
break;
}
// Everything else in the header is shared.
hdr.fPixelWidth = width;
hdr.fPixelHeight = height;
hdr.fNumberOfArrayElements = 0;
hdr.fNumberOfFaces = 1;
hdr.fNumberOfMipmapLevels = 1;
// Calculate the key value data size
hdr.fBytesOfKeyValueData = 0;
for (KeyValue *kv = kvPairs.begin(); kv != kvPairs.end(); ++kv) {
// Key value size is the size of the key value data,
// four bytes for saying how big the key value size is
// and then additional bytes for padding to four byte boundary
size_t kvsize = kv->size();
kvsize += 4;
kvsize = (kvsize + 3) & ~3;
hdr.fBytesOfKeyValueData = SkToU32(hdr.fBytesOfKeyValueData + kvsize);
}
// Write the header
if (!stream->write(&hdr, sizeof(hdr))) {
return false;
}
// Write out each key value pair
for (KeyValue *kv = kvPairs.begin(); kv != kvPairs.end(); ++kv) {
if (!kv->writeKeyAndValueForKTX(stream)) {
return false;
}
}
// Calculate the size of the data
int bpp = bitmap.bytesPerPixel();
//.........这里部分代码省略.........
示例14: name
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::RunInSeries(
std::unique_ptr<GrFragmentProcessor>* series, int cnt) {
class SeriesFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(
std::unique_ptr<GrFragmentProcessor>* children, int cnt) {
return std::unique_ptr<GrFragmentProcessor>(new SeriesFragmentProcessor(children, cnt));
}
const char* name() const override { return "Series"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
SkSTArray<4, std::unique_ptr<GrFragmentProcessor>> children(this->numChildProcessors());
for (int i = 0; i < this->numChildProcessors(); ++i) {
if (!children.push_back(this->childProcessor(i).clone())) {
return nullptr;
}
}
return Make(children.begin(), this->numChildProcessors());
}
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
// First guy's input might be nil.
SkString temp("out0");
this->emitChild(0, args.fInputColor, &temp, args);
SkString input = temp;
for (int i = 1; i < this->numChildProcessors() - 1; ++i) {
temp.printf("out%d", i);
this->emitChild(i, input.c_str(), &temp, args);
input = temp;
}
// Last guy writes to our output variable.
this->emitChild(this->numChildProcessors() - 1, input.c_str(), args);
}
};
return new GLFP;
}
SeriesFragmentProcessor(std::unique_ptr<GrFragmentProcessor>* children, int cnt)
: INHERITED(kSeriesFragmentProcessor_ClassID, OptFlags(children, cnt)) {
SkASSERT(cnt > 1);
for (int i = 0; i < cnt; ++i) {
this->registerChildProcessor(std::move(children[i]));
}
}
static OptimizationFlags OptFlags(std::unique_ptr<GrFragmentProcessor>* children, int cnt) {
OptimizationFlags flags = kAll_OptimizationFlags;
for (int i = 0; i < cnt && flags != kNone_OptimizationFlags; ++i) {
flags &= children[i]->optimizationFlags();
}
return flags;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
GrColor4f constantOutputForConstantInput(GrColor4f color) const override {
int childCnt = this->numChildProcessors();
for (int i = 0; i < childCnt; ++i) {
color = ConstantOutputForConstantInput(this->childProcessor(i), color);
}
return color;
}
typedef GrFragmentProcessor INHERITED;
};
if (!cnt) {
return nullptr;
}
if (1 == cnt) {
return std::move(series[0]);
}
// Run the through the series, do the invariant output processing, and look for eliminations.
GrProcessorAnalysisColor inputColor;
inputColor.setToUnknown();
GrColorFragmentProcessorAnalysis info(inputColor, unique_ptr_address_as_pointer_address(series),
cnt);
SkTArray<std::unique_ptr<GrFragmentProcessor>> replacementSeries;
GrColor4f knownColor;
int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
if (leadingFPsToEliminate) {
std::unique_ptr<GrFragmentProcessor> colorFP(
GrConstColorProcessor::Make(knownColor, GrConstColorProcessor::InputMode::kIgnore));
if (leadingFPsToEliminate == cnt) {
return colorFP;
}
cnt = cnt - leadingFPsToEliminate + 1;
replacementSeries.reserve(cnt);
replacementSeries.emplace_back(std::move(colorFP));
for (int i = 0; i < cnt - 1; ++i) {
replacementSeries.emplace_back(std::move(series[leadingFPsToEliminate + i]));
}
series = replacementSeries.begin();
}
//.........这里部分代码省略.........