本文整理汇总了C++中SkPoint::distanceToSqd方法的典型用法代码示例。如果您正苦于以下问题:C++ SkPoint::distanceToSqd方法的具体用法?C++ SkPoint::distanceToSqd怎么用?C++ SkPoint::distanceToSqd使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkPoint
的用法示例。
在下文中一共展示了SkPoint::distanceToSqd方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: update_degenerate_test
static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) {
switch (data->fStage) {
case DegenerateTestData::kInitial:
data->fFirstPoint = pt;
data->fStage = DegenerateTestData::kPoint;
break;
case DegenerateTestData::kPoint:
if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) {
data->fLineNormal = pt - data->fFirstPoint;
data->fLineNormal.normalize();
data->fLineNormal.setOrthog(data->fLineNormal);
data->fLineC = -data->fLineNormal.dot(data->fFirstPoint);
data->fStage = DegenerateTestData::kLine;
}
break;
case DegenerateTestData::kLine:
if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) {
data->fStage = DegenerateTestData::kNonDegenerate;
}
case DegenerateTestData::kNonDegenerate:
break;
default:
SkFAIL("Unexpected degenerate test stage.");
}
}
示例2: distanceToLineSegmentBetweenSqd
SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a,
const SkPoint& b) const {
// See comments to distanceToLineBetweenSqd. If the projection of c onto
// u is between a and b then this returns the same result as that
// function. Otherwise, it returns the distance to the closer of a and
// b. Let the projection of v onto u be v'. There are three cases:
// 1. v' points opposite to u. c is not between a and b and is closer
// to a than b.
// 2. v' points along u and has magnitude less than y. c is between
// a and b and the distance to the segment is the same as distance
// to the line ab.
// 3. v' points along u and has greater magnitude than u. c is not
// not between a and b and is closer to b than a.
// v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
// in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
// we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
// avoid a sqrt to compute |u|.
SkVector u = b - a;
SkVector v = *this - a;
SkScalar uLengthSqd = u.lengthSqd();
SkScalar uDotV = SkPoint::DotProduct(u, v);
if (uDotV <= 0) {
return v.lengthSqd();
} else if (uDotV > uLengthSqd) {
return b.distanceToSqd(*this);
} else {
SkScalar det = u.cross(v);
return SkScalarMulDiv(det, det, uLengthSqd);
}
}
示例3: SkOffsetSegment
// Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side'
bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
int side, SkPoint* offset0, SkPoint* offset1) {
SkASSERT(side == -1 || side == 1);
SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
if (SkScalarNearlyEqual(d0, d1)) {
// if distances are equal, can just outset by the perpendicular
perp.setLength(d0*side);
*offset0 = p0 + perp;
*offset1 = p1 + perp;
} else {
// Otherwise we need to compute the outer tangent.
// See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm
if (d0 < d1) {
side = -side;
}
SkScalar dD = d0 - d1;
// if one circle is inside another, we can't compute an offset
if (dD*dD >= p0.distanceToSqd(p1)) {
return false;
}
SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0 - p0.fX*d1) / dD,
(p1.fY*d0 - p0.fY*d1) / dD);
SkScalar d0sq = d0*d0;
SkVector dP = outerTangentIntersect - p0;
SkScalar dPlenSq = dP.lengthSqd();
SkScalar discrim = SkScalarSqrt(dPlenSq - d0sq);
offset0->fX = p0.fX + (d0sq*dP.fX - side*d0*dP.fY*discrim) / dPlenSq;
offset0->fY = p0.fY + (d0sq*dP.fY + side*d0*dP.fX*discrim) / dPlenSq;
SkScalar d1sq = d1*d1;
dP = outerTangentIntersect - p1;
dPlenSq = dP.lengthSqd();
discrim = SkScalarSqrt(dPlenSq - d1sq);
offset1->fX = p1.fX + (d1sq*dP.fX - side*d1*dP.fY*discrim) / dPlenSq;
offset1->fY = p1.fY + (d1sq*dP.fY + side*d1*dP.fX*discrim) / dPlenSq;
}
return true;
}
示例4: duplicate_pt
static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
SkScalar distSq = p0.distanceToSqd(p1);
return distSq < kCloseSqd;
}