本文整理汇总了C++中SkIRect::sort方法的典型用法代码示例。如果您正苦于以下问题:C++ SkIRect::sort方法的具体用法?C++ SkIRect::sort怎么用?C++ SkIRect::sort使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkIRect
的用法示例。
在下文中一共展示了SkIRect::sort方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: generate_random_rect
/**
* Return a random SkIRect inside the range specified.
* @param rand Random number generator.
* @param maxX Exclusive maximum x-coordinate. SkIRect's fLeft and fRight will be
* in the range [0, maxX)
* @param maxY Exclusive maximum y-coordinate. SkIRect's fTop and fBottom will be
* in the range [0, maxY)
* @return SkIRect Non-empty, non-degenerate rectangle.
*/
static SkIRect generate_random_rect(SkRandom* rand, int32_t maxX, int32_t maxY) {
SkASSERT(maxX > 1 && maxY > 1);
int32_t left = rand->nextULessThan(maxX);
int32_t right = rand->nextULessThan(maxX);
int32_t top = rand->nextULessThan(maxY);
int32_t bottom = rand->nextULessThan(maxY);
SkIRect rect = SkIRect::MakeLTRB(left, top, right, bottom);
rect.sort();
// Make sure rect is not empty.
if (rect.fLeft == rect.fRight) {
if (rect.fLeft > 0) {
rect.fLeft--;
} else {
rect.fRight++;
// This branch is only taken if 0 == rect.fRight, and
// maxX must be at least 2, so it must still be in
// range.
SkASSERT(rect.fRight < maxX);
}
}
if (rect.fTop == rect.fBottom) {
if (rect.fTop > 0) {
rect.fTop--;
} else {
rect.fBottom++;
// Again, this must be in range.
SkASSERT(rect.fBottom < maxY);
}
}
return rect;
}
示例2: generate_random_subset
SkIRect generate_random_subset(SkRandom* rand, int w, int h) {
SkIRect rect;
do {
rect.fLeft = rand->nextRangeU(0, w);
rect.fTop = rand->nextRangeU(0, h);
rect.fRight = rand->nextRangeU(0, w);
rect.fBottom = rand->nextRangeU(0, h);
rect.sort();
} while (rect.isEmpty());
return rect;
}
示例3: random_rect
static SkIRect random_rect(SkRandom& rand) {
SkIRect rect = {0,0,0,0};
while (rect.isEmpty()) {
rect.fLeft = rand.nextS() % MAX_SIZE;
rect.fRight = rand.nextS() % MAX_SIZE;
rect.fTop = rand.nextS() % MAX_SIZE;
rect.fBottom = rand.nextS() % MAX_SIZE;
rect.sort();
}
return rect;
}
示例4: search
void SkTileGrid::search(const SkIRect& query, SkTDArray<void*>* results) {
SkIRect adjustedQuery = query;
// The inset is to counteract the outset that was applied in 'insert'
// The outset/inset is to optimize for lookups of size
// 'tileInterval + 2 * margin' that are aligned with the tile grid.
adjustedQuery.inset(fInfo.fMargin.width(), fInfo.fMargin.height());
adjustedQuery.offset(fInfo.fOffset);
adjustedQuery.sort(); // in case the inset inverted the rectangle
// Convert the query rectangle from device coordinates to tile coordinates
// by rounding outwards to the nearest tile boundary so that the resulting tile
// region includes the query rectangle. (using truncating division to "floor")
int tileStartX = adjustedQuery.left() / fInfo.fTileInterval.width();
int tileEndX = (adjustedQuery.right() + fInfo.fTileInterval.width() - 1) /
fInfo.fTileInterval.width();
int tileStartY = adjustedQuery.top() / fInfo.fTileInterval.height();
int tileEndY = (adjustedQuery.bottom() + fInfo.fTileInterval.height() - 1) /
fInfo.fTileInterval.height();
tileStartX = SkPin32(tileStartX, 0, fXTileCount - 1);
tileEndX = SkPin32(tileEndX, tileStartX+1, fXTileCount);
tileStartY = SkPin32(tileStartY, 0, fYTileCount - 1);
tileEndY = SkPin32(tileEndY, tileStartY+1, fYTileCount);
int queryTileCount = (tileEndX - tileStartX) * (tileEndY - tileStartY);
SkASSERT(queryTileCount);
if (queryTileCount == 1) {
*results = this->tile(tileStartX, tileStartY);
} else {
results->reset();
SkTDArray<int> curPositions;
curPositions.setCount(queryTileCount);
// Note: Reserving space for 1024 tile pointers on the stack. If the
// malloc becomes a bottleneck, we may consider increasing that number.
// Typical large web page, say 2k x 16k, would require 512 tiles of
// size 256 x 256 pixels.
SkAutoSTArray<1024, SkTDArray<void *>*> storage(queryTileCount);
SkTDArray<void *>** tileRange = storage.get();
int tile = 0;
for (int x = tileStartX; x < tileEndX; ++x) {
for (int y = tileStartY; y < tileEndY; ++y) {
tileRange[tile] = &this->tile(x, y);
curPositions[tile] = tileRange[tile]->count() ? 0 : kTileFinished;
++tile;
}
}
void *nextElement;
while(NULL != (nextElement = fNextDatumFunction(tileRange, curPositions))) {
results->push(nextElement);
}
}
}
示例5: search
void SkTileGrid::search(const SkRect& query, SkTDArray<void*>* results) const {
SkIRect adjusted;
query.roundOut(&adjusted);
// The inset is to counteract the outset that was applied in 'insert'
// The outset/inset is to optimize for lookups of size
// 'tileInterval + 2 * margin' that are aligned with the tile grid.
adjusted.inset(fInfo.fMargin.width(), fInfo.fMargin.height());
adjusted.offset(fInfo.fOffset);
adjusted.sort(); // in case the inset inverted the rectangle
// Convert the query rectangle from device coordinates to tile coordinates
// by rounding outwards to the nearest tile boundary so that the resulting tile
// region includes the query rectangle.
int startX = adjusted.left() / fInfo.fTileInterval.width(),
startY = adjusted.top() / fInfo.fTileInterval.height();
int endX = divide_ceil(adjusted.right(), fInfo.fTileInterval.width()),
endY = divide_ceil(adjusted.bottom(), fInfo.fTileInterval.height());
// Logically, we could pin endX to [startX, fXTiles], but we force it
// up to (startX, fXTiles] to make sure we hit at least one tile.
// This snaps just-out-of-bounds queries to the neighboring border tile.
// I don't know if this is an important feature outside of unit tests.
startX = SkPin32(startX, 0, fXTiles - 1);
startY = SkPin32(startY, 0, fYTiles - 1);
endX = SkPin32(endX, startX + 1, fXTiles);
endY = SkPin32(endY, startY + 1, fYTiles);
const int tilesHit = (endX - startX) * (endY - startY);
SkASSERT(tilesHit > 0);
if (tilesHit == 1) {
// A performance shortcut. The merging code below would work fine here too.
const SkTDArray<Entry>& tile = fTiles[startY * fXTiles + startX];
results->setCount(tile.count());
for (int i = 0; i < tile.count(); i++) {
(*results)[i] = tile[i].data;
}
return;
}
// We've got to merge the data in many tiles into a single sorted and deduplicated stream.
// We do a simple k-way merge based on the order the data was inserted.
// Gather pointers to the starts and ends of the tiles to merge.
SkAutoSTArray<kStackAllocationTileCount, const Entry*> starts(tilesHit), ends(tilesHit);
int i = 0;
for (int x = startX; x < endX; x++) {
for (int y = startY; y < endY; y++) {
starts[i] = fTiles[y * fXTiles + x].begin();
ends[i] = fTiles[y * fXTiles + x].end();
i++;
}
}
// Merge tiles into results until they're fully consumed.
results->reset();
while (true) {
// The tiles themselves are already ordered, so the earliest is at the front of some tile.
// It may be at the front of several, even all, tiles.
const Entry* earliest = NULL;
for (int i = 0; i < starts.count(); i++) {
if (starts[i] < ends[i]) {
if (NULL == earliest || starts[i]->order < earliest->order) {
earliest = starts[i];
}
}
}
// If we didn't find an earliest entry, there isn't anything left to merge.
if (NULL == earliest) {
return;
}
// We did find an earliest entry. Output it, and step forward every tile that contains it.
results->push(earliest->data);
for (int i = 0; i < starts.count(); i++) {
if (starts[i] < ends[i] && starts[i]->order == earliest->order) {
starts[i]++;
}
}
}
}