本文整理汇总了C++中SkDQuad::dxdyAtT方法的典型用法代码示例。如果您正苦于以下问题:C++ SkDQuad::dxdyAtT方法的具体用法?C++ SkDQuad::dxdyAtT怎么用?C++ SkDQuad::dxdyAtT使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkDQuad
的用法示例。
在下文中一共展示了SkDQuad::dxdyAtT方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: add_intercept
// returns false if there's more than one intercept or the intercept doesn't match the point
// returns true if the intercept was successfully added or if the
// original quads need to be subdivided
static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax,
SkIntersections* i, bool* subDivide) {
double tMid = (tMin + tMax) / 2;
SkDPoint mid = q2.ptAtT(tMid);
SkDLine line;
line[0] = line[1] = mid;
SkDVector dxdy = q2.dxdyAtT(tMid);
line[0] -= dxdy;
line[1] += dxdy;
SkIntersections rootTs;
rootTs.allowNear(false);
int roots = rootTs.intersect(q1, line);
if (roots == 0) {
if (subDivide) {
*subDivide = true;
}
return true;
}
if (roots == 2) {
return false;
}
SkDPoint pt2 = q1.ptAtT(rootTs[0][0]);
if (!pt2.approximatelyEqualHalf(mid)) {
return false;
}
i->insertSwap(rootTs[0][0], tMid, pt2);
return true;
}
开发者ID:IllusionRom-deprecated,项目名称:android_platform_external_chromium_org_third_party_skia_src,代码行数:31,代码来源:SkDQuadIntersection.cpp
示例2: sizeof
// determine that slop required after quad/quad finds a candidate intersection
// use the cross of the tangents plus the distance from 1 or 0 as knobs
DEF_TEST(PathOpsCubicQuadSlop, reporter) {
// create a random non-selfintersecting cubic
// break it into quadratics
// offset the quadratic, measuring the slop required to find the intersection
if (!gPathOpCubicQuadSlopVerbose) { // takes a while to run -- so exclude it by default
return;
}
int results[101];
sk_bzero(results, sizeof(results));
double minCross[101];
sk_bzero(minCross, sizeof(minCross));
double maxCross[101];
sk_bzero(maxCross, sizeof(maxCross));
double sumCross[101];
sk_bzero(sumCross, sizeof(sumCross));
int foundOne = 0;
int slopCount = 1;
SkRandom ran;
for (int index = 0; index < 10000000; ++index) {
if (index % 1000 == 999) SkDebugf(".");
SkDCubic cubic = {{
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
}};
SkIntersections i;
if (i.intersect(cubic)) {
continue;
}
SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts;
cubic.toQuadraticTs(cubic.calcPrecision(), &ts);
double tStart = 0;
int tsCount = ts.count();
for (int i1 = 0; i1 <= tsCount; ++i1) {
const double tEnd = i1 < tsCount ? ts[i1] : 1;
SkDCubic part = cubic.subDivide(tStart, tEnd);
SkDQuad quad = part.toQuad();
SkReduceOrder reducer;
int order = reducer.reduce(quad);
if (order != 3) {
continue;
}
for (int i2 = 0; i2 < 100; ++i2) {
SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextRangeF(-100, 100)};
SkDQuad nearby = {{
{quad[0].fX + endDisplacement.fX, quad[0].fY + endDisplacement.fY},
{quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ran.nextRangeF(-100, 100)},
{quad[2].fX - endDisplacement.fX, quad[2].fY - endDisplacement.fY}
}};
order = reducer.reduce(nearby);
if (order != 3) {
continue;
}
SkIntersections locals;
locals.allowNear(false);
locals.intersect(quad, nearby);
if (locals.used() != 1) {
continue;
}
// brute force find actual intersection
SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }};
SkIntersections liner;
int i3;
int found = -1;
int foundErr = true;
for (i3 = 1; i3 <= 1000; ++i3) {
cubicLine[0] = cubicLine[1];
cubicLine[1] = cubic.ptAtT(i3 / 1000.);
liner.reset();
liner.allowNear(false);
liner.intersect(nearby, cubicLine);
if (liner.used() == 0) {
continue;
}
if (liner.used() > 1) {
foundErr = true;
break;
}
if (found > 0) {
foundErr = true;
break;
}
foundErr = false;
found = i3;
}
if (foundErr) {
continue;
}
SkDVector dist = liner.pt(0) - locals.pt(0);
SkDVector qV = nearby.dxdyAtT(locals[0][0]);
double cubicT = (found - 1 + liner[1][0]) / 1000.;
SkDVector cV = cubic.dxdyAtT(cubicT);
double qxc = qV.crossCheck(cV);
double qvLen = qV.length();
double cvLen = cV.length();
double maxLen = SkTMax(qvLen, cvLen);
qxc /= maxLen;
//.........这里部分代码省略.........
示例3: is_linear_inner
static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
double t2s, double t2e, SkIntersections* i, bool* subDivide) {
SkDQuad hull = q1.subDivide(t1s, t1e);
SkDLine line = {{hull[2], hull[0]}};
const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
const size_t kTestCount = SK_ARRAY_COUNT(testLines);
SkSTArray<kTestCount * 2, double, true> tsFound;
for (size_t index = 0; index < kTestCount; ++index) {
SkIntersections rootTs;
rootTs.allowNear(false);
int roots = rootTs.intersect(q2, *testLines[index]);
for (int idx2 = 0; idx2 < roots; ++idx2) {
double t = rootTs[0][idx2];
#ifdef SK_DEBUG
SkDPoint qPt = q2.ptAtT(t);
SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]);
SkASSERT(qPt.approximatelyEqual(lPt));
#endif
if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
continue;
}
tsFound.push_back(rootTs[0][idx2]);
}
}
int tCount = tsFound.count();
if (tCount <= 0) {
return true;
}
double tMin, tMax;
if (tCount == 1) {
tMin = tMax = tsFound[0];
} else {
SkASSERT(tCount > 1);
SkTQSort<double>(tsFound.begin(), tsFound.end() - 1);
tMin = tsFound[0];
tMax = tsFound[tsFound.count() - 1];
}
SkDPoint end = q2.ptAtT(t2s);
bool startInTriangle = hull.pointInHull(end);
if (startInTriangle) {
tMin = t2s;
}
end = q2.ptAtT(t2e);
bool endInTriangle = hull.pointInHull(end);
if (endInTriangle) {
tMax = t2e;
}
int split = 0;
SkDVector dxy1, dxy2;
if (tMin != tMax || tCount > 2) {
dxy2 = q2.dxdyAtT(tMin);
for (int index = 1; index < tCount; ++index) {
dxy1 = dxy2;
dxy2 = q2.dxdyAtT(tsFound[index]);
double dot = dxy1.dot(dxy2);
if (dot < 0) {
split = index - 1;
break;
}
}
}
if (split == 0) { // there's one point
if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
return true;
}
i->swap();
return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
}
// At this point, we have two ranges of t values -- treat each separately at the split
bool result;
if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
result = true;
} else {
i->swap();
result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
}
if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
result = true;
} else {
i->swap();
result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
}
return result;
}
开发者ID:IllusionRom-deprecated,项目名称:android_platform_external_chromium_org_third_party_skia_src,代码行数:84,代码来源:SkDQuadIntersection.cpp