本文整理汇总了C++中SkDLine::nearPoint方法的典型用法代码示例。如果您正苦于以下问题:C++ SkDLine::nearPoint方法的具体用法?C++ SkDLine::nearPoint怎么用?C++ SkDLine::nearPoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkDLine
的用法示例。
在下文中一共展示了SkDLine::nearPoint方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: vertical
int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
double x, bool flipped) {
fMax = 3; // cleanup parallel lines will bring this back line
// see if end points intersect the opposite line
double t;
SkDPoint topPt = { x, top };
if ((t = line.exactPoint(topPt)) >= 0) {
insert(t, (double) flipped, topPt);
}
if (top != bottom) {
SkDPoint bottomPt = { x, bottom };
if ((t = line.exactPoint(bottomPt)) >= 0) {
insert(t, (double) !flipped, bottomPt);
}
for (int index = 0; index < 2; ++index) {
if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) {
insert((double) index, flipped ? 1 - t : t, line[index]);
}
}
}
int result = vertical_coincident(line, x);
if (result == 1 && fUsed == 0) {
fT[0][0] = VerticalIntercept(line, x);
double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
if (between(top, yIntercept, bottom)) {
fT[1][0] = (yIntercept - top) / (bottom - top);
if (flipped) {
// OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
for (int index = 0; index < result; ++index) {
fT[1][index] = 1 - fT[1][index];
}
}
fPt[0].fX = x;
fPt[0].fY = yIntercept;
fUsed = 1;
}
}
if (fAllowNear || result == 2) {
if ((t = line.nearPoint(topPt, nullptr)) >= 0) {
insert(t, (double) flipped, topPt);
}
if (top != bottom) {
SkDPoint bottomPt = { x, bottom };
if ((t = line.nearPoint(bottomPt, nullptr)) >= 0) {
insert(t, (double) !flipped, bottomPt);
}
for (int index = 0; index < 2; ++index) {
if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) {
insert((double) index, flipped ? 1 - t : t, line[index]);
}
}
}
}
cleanUpParallelLines(result == 2);
SkASSERT(fUsed <= 2);
return fUsed;
}
示例2: horizontal
int SkIntersections::horizontal(const SkDLine& line, double left, double right,
double y, bool flipped) {
fMax = 3; // clean up parallel at the end will limit the result to 2 at the most
// see if end points intersect the opposite line
double t;
const SkDPoint leftPt = { left, y };
if ((t = line.exactPoint(leftPt)) >= 0) {
insert(t, (double) flipped, leftPt);
}
if (left != right) {
const SkDPoint rightPt = { right, y };
if ((t = line.exactPoint(rightPt)) >= 0) {
insert(t, (double) !flipped, rightPt);
}
for (int index = 0; index < 2; ++index) {
if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) {
insert((double) index, flipped ? 1 - t : t, line[index]);
}
}
}
int result = horizontal_coincident(line, y);
if (result == 1 && fUsed == 0) {
fT[0][0] = HorizontalIntercept(line, y);
double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
if (between(left, xIntercept, right)) {
fT[1][0] = (xIntercept - left) / (right - left);
if (flipped) {
// OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
for (int index = 0; index < result; ++index) {
fT[1][index] = 1 - fT[1][index];
}
}
fPt[0].fX = xIntercept;
fPt[0].fY = y;
fUsed = 1;
}
}
if (fAllowNear || result == 2) {
if ((t = line.nearPoint(leftPt, nullptr)) >= 0) {
insert(t, (double) flipped, leftPt);
}
if (left != right) {
const SkDPoint rightPt = { right, y };
if ((t = line.nearPoint(rightPt, nullptr)) >= 0) {
insert(t, (double) !flipped, rightPt);
}
for (int index = 0; index < 2; ++index) {
if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) {
insert((double) index, flipped ? 1 - t : t, line[index]);
}
}
}
}
cleanUpParallelLines(result == 2);
return fUsed;
}
示例3: intersect
// note that this only works if both lines are neither horizontal nor vertical
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
fMax = 3; // note that we clean up so that there is no more than two in the end
// see if end points intersect the opposite line
double t;
for (int iA = 0; iA < 2; ++iA) {
if ((t = b.exactPoint(a[iA])) >= 0) {
insert(iA, t, a[iA]);
}
}
for (int iB = 0; iB < 2; ++iB) {
if ((t = a.exactPoint(b[iB])) >= 0) {
insert(t, iB, b[iB]);
}
}
/* Determine the intersection point of two line segments
Return FALSE if the lines don't intersect
from: http://paulbourke.net/geometry/lineline2d/ */
double axLen = a[1].fX - a[0].fX;
double ayLen = a[1].fY - a[0].fY;
double bxLen = b[1].fX - b[0].fX;
double byLen = b[1].fY - b[0].fY;
/* Slopes match when denom goes to zero:
axLen / ayLen == bxLen / byLen
(ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
byLen * axLen == ayLen * bxLen
byLen * axLen - ayLen * bxLen == 0 ( == denom )
*/
double axByLen = axLen * byLen;
double ayBxLen = ayLen * bxLen;
// detect parallel lines the same way here and in SkOpAngle operator <
// so that non-parallel means they are also sortable
bool unparallel = fAllowNear ? NotAlmostEqualUlps(axByLen, ayBxLen)
: NotAlmostDequalUlps(axByLen, ayBxLen);
if (unparallel && fUsed == 0) {
double ab0y = a[0].fY - b[0].fY;
double ab0x = a[0].fX - b[0].fX;
double numerA = ab0y * bxLen - byLen * ab0x;
double numerB = ab0y * axLen - ayLen * ab0x;
double denom = axByLen - ayBxLen;
if (between(0, numerA, denom) && between(0, numerB, denom)) {
fT[0][0] = numerA / denom;
fT[1][0] = numerB / denom;
computePoints(a, 1);
}
}
/* Allow tracking that both sets of end points are near each other -- the lines are entirely
coincident -- even when the end points are not exactly the same.
Mark this as a 'wild card' for the end points, so that either point is considered totally
coincident. Then, avoid folding the lines over each other, but allow either end to mate
to the next set of lines.
*/
if (fAllowNear || !unparallel) {
double aNearB[2];
double bNearA[2];
bool aNotB[2] = {false, false};
bool bNotA[2] = {false, false};
int nearCount = 0;
for (int index = 0; index < 2; ++index) {
aNearB[index] = t = b.nearPoint(a[index], &aNotB[index]);
nearCount += t >= 0;
bNearA[index] = t = a.nearPoint(b[index], &bNotA[index]);
nearCount += t >= 0;
}
if (nearCount > 0) {
// Skip if each segment contributes to one end point.
if (nearCount != 2 || aNotB[0] == aNotB[1]) {
for (int iA = 0; iA < 2; ++iA) {
if (!aNotB[iA]) {
continue;
}
int nearer = aNearB[iA] > 0.5;
if (!bNotA[nearer]) {
continue;
}
SkASSERT(a[iA] != b[nearer]);
SkASSERT(iA == (bNearA[nearer] > 0.5));
insertNear(iA, nearer, a[iA], b[nearer]);
aNearB[iA] = -1;
bNearA[nearer] = -1;
nearCount -= 2;
}
}
if (nearCount > 0) {
for (int iA = 0; iA < 2; ++iA) {
if (aNearB[iA] >= 0) {
insert(iA, aNearB[iA], a[iA]);
}
}
for (int iB = 0; iB < 2; ++iB) {
if (bNearA[iB] >= 0) {
insert(bNearA[iB], iB, b[iB]);
}
}
}
}
}
cleanUpParallelLines(!unparallel);
SkASSERT(fUsed <= 2);
return fUsed;
//.........这里部分代码省略.........