当前位置: 首页>>代码示例>>C++>>正文


C++ SkDCubic::calcPrecision方法代码示例

本文整理汇总了C++中SkDCubic::calcPrecision方法的典型用法代码示例。如果您正苦于以下问题:C++ SkDCubic::calcPrecision方法的具体用法?C++ SkDCubic::calcPrecision怎么用?C++ SkDCubic::calcPrecision使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SkDCubic的用法示例。


在下文中一共展示了SkDCubic::calcPrecision方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: oneOff

static void oneOff(skiatest::Reporter* reporter, const SkDCubic& cubic1, const SkDCubic& cubic2,
        bool coin) {
    SkASSERT(ValidCubic(cubic1));
    SkASSERT(ValidCubic(cubic2));
#if ONE_OFF_DEBUG
    SkDebugf("computed quadratics given\n");
    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
        cubic1[0].fX, cubic1[0].fY, cubic1[1].fX, cubic1[1].fY,
        cubic1[2].fX, cubic1[2].fY, cubic1[3].fX, cubic1[3].fY);
    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
        cubic2[0].fX, cubic2[0].fY, cubic2[1].fX, cubic2[1].fY,
        cubic2[2].fX, cubic2[2].fY, cubic2[3].fX, cubic2[3].fY);
#endif
    SkTArray<SkDQuad, true> quads1;
    CubicToQuads(cubic1, cubic1.calcPrecision(), quads1);
#if ONE_OFF_DEBUG
    SkDebugf("computed quadratics set 1\n");
    for (int index = 0; index < quads1.count(); ++index) {
        const SkDQuad& q = quads1[index];
        SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", q[0].fX, q[0].fY,
                 q[1].fX, q[1].fY,  q[2].fX, q[2].fY);
    }
#endif
    SkTArray<SkDQuad, true> quads2;
    CubicToQuads(cubic2, cubic2.calcPrecision(), quads2);
#if ONE_OFF_DEBUG
    SkDebugf("computed quadratics set 2\n");
    for (int index = 0; index < quads2.count(); ++index) {
        const SkDQuad& q = quads2[index];
        SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", q[0].fX, q[0].fY,
                 q[1].fX, q[1].fY,  q[2].fX, q[2].fY);
    }
#endif
    SkIntersections intersections;
    intersections.intersect(cubic1, cubic2);
    REPORTER_ASSERT(reporter, !coin || intersections.used() == 2);
    double tt1, tt2;
    SkDPoint xy1, xy2;
    for (int pt3 = 0; pt3 < intersections.used(); ++pt3) {
        tt1 = intersections[0][pt3];
        xy1 = cubic1.ptAtT(tt1);
        tt2 = intersections[1][pt3];
        xy2 = cubic2.ptAtT(tt2);
        const SkDPoint& iPt = intersections.pt(pt3);
#if ONE_OFF_DEBUG
        SkDebugf("%s t1=%1.9g (%1.9g, %1.9g) (%1.9g, %1.9g) (%1.9g, %1.9g) t2=%1.9g\n",
                __FUNCTION__, tt1, xy1.fX, xy1.fY, iPt.fX,
                iPt.fY, xy2.fX, xy2.fY, tt2);
#endif
       REPORTER_ASSERT(reporter, xy1.approximatelyEqual(iPt));
       REPORTER_ASSERT(reporter, xy2.approximatelyEqual(iPt));
       REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2));
    }
    reporter->bumpTestCount();
}
开发者ID:UIKit0,项目名称:skia,代码行数:55,代码来源:PathOpsCubicIntersectionTest.cpp

示例2: test

static void test(skiatest::Reporter* reporter, const SkDQuad* quadTests, const char* name,
                 int firstTest, size_t testCount) {
    for (size_t index = firstTest; index < testCount; ++index) {
        const SkDQuad& quad = quadTests[index];
        SkDCubic cubic = quad.toCubic();
        double precision = cubic.calcPrecision();
        SkTDArray<SkDQuad> quads;
        CubicToQuads(cubic, precision, quads);
        if (quads.count() != 1) {
            SkDebugf("%s [%d] cubic to quadratics failed count=%d\n", name, static_cast<int>(index),
                     quads.count());
        }
        REPORTER_ASSERT(reporter, quads.count() == 1);
    }
}
开发者ID:jdm,项目名称:skia,代码行数:15,代码来源:PathOpsCubicToQuadsTest.cpp

示例3: CubicPathToQuads

void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) {
    quadPath->reset();
    SkDCubic cubic;
    SkTArray<SkDQuad, true> quads;
    SkPath::RawIter iter(cubicPath);
    uint8_t verb;
    SkPoint pts[4];
    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                quadPath->moveTo(pts[0].fX, pts[0].fY);
                continue;
            case SkPath::kLine_Verb:
                quadPath->lineTo(pts[1].fX, pts[1].fY);
                break;
            case SkPath::kQuad_Verb:
                quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
                break;
            case SkPath::kCubic_Verb:
                quads.reset();
                cubic.set(pts);
                CubicToQuads(cubic, cubic.calcPrecision(), quads);
                for (int index = 0; index < quads.count(); ++index) {
                    SkPoint qPts[2] = {
                        quads[index][1].asSkPoint(),
                        quads[index][2].asSkPoint()
                    };
                    quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY);
                }
                break;
            case SkPath::kClose_Verb:
                 quadPath->close();
                break;
            default:
                SkDEBUGFAIL("bad verb");
                return;
        }
    }
}
开发者ID:WangCrystal,项目名称:skia,代码行数:39,代码来源:PathOpsTestCommon.cpp

示例4: sizeof

// determine that slop required after quad/quad finds a candidate intersection
// use the cross of the tangents plus the distance from 1 or 0 as knobs
DEF_TEST(PathOpsCubicQuadSlop, reporter) {
    // create a random non-selfintersecting cubic
    // break it into quadratics
    // offset the quadratic, measuring the slop required to find the intersection
    if (!gPathOpCubicQuadSlopVerbose) {  // takes a while to run -- so exclude it by default
        return;
    }
    int results[101];
    sk_bzero(results, sizeof(results));
    double minCross[101];
    sk_bzero(minCross, sizeof(minCross));
    double maxCross[101];
    sk_bzero(maxCross, sizeof(maxCross));
    double sumCross[101];
    sk_bzero(sumCross, sizeof(sumCross));
    int foundOne = 0;
    int slopCount = 1;
    SkRandom ran;
    for (int index = 0; index < 10000000; ++index) {
        if (index % 1000 == 999) SkDebugf(".");
        SkDCubic cubic = {{
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
        }};
        SkIntersections i;
        if (i.intersect(cubic)) {
            continue;
        }
        SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts;
        cubic.toQuadraticTs(cubic.calcPrecision(), &ts);
        double tStart = 0;
        int tsCount = ts.count();
        for (int i1 = 0; i1 <= tsCount; ++i1) {
            const double tEnd = i1 < tsCount ? ts[i1] : 1;
            SkDCubic part = cubic.subDivide(tStart, tEnd);
            SkDQuad quad = part.toQuad();
            SkReduceOrder reducer;
            int order = reducer.reduce(quad);
            if (order != 3) {
                continue;
            }
            for (int i2 = 0; i2 < 100; ++i2) {
                SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextRangeF(-100, 100)};
                SkDQuad nearby = {{
                        {quad[0].fX + endDisplacement.fX, quad[0].fY + endDisplacement.fY},
                        {quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ran.nextRangeF(-100, 100)},
                        {quad[2].fX - endDisplacement.fX, quad[2].fY - endDisplacement.fY}
                }};
                order = reducer.reduce(nearby);
                if (order != 3) {
                    continue;
                }
                SkIntersections locals;
                locals.allowNear(false);
                locals.intersect(quad, nearby);
                if (locals.used() != 1) {
                    continue;
                }
                // brute force find actual intersection
                SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }};
                SkIntersections liner;
                int i3;
                int found = -1;
                int foundErr = true;
                for (i3 = 1; i3 <= 1000; ++i3) {
                    cubicLine[0] = cubicLine[1];
                    cubicLine[1] = cubic.ptAtT(i3 / 1000.);
                    liner.reset();
                    liner.allowNear(false);
                    liner.intersect(nearby, cubicLine);
                    if (liner.used() == 0) {
                        continue;
                    }
                    if (liner.used() > 1) {
                        foundErr = true;
                        break;
                    }
                    if (found > 0) {
                        foundErr = true;
                        break;
                    }
                    foundErr = false;
                    found = i3;
                }
                if (foundErr) {
                    continue;
                }
                SkDVector dist = liner.pt(0) - locals.pt(0);
                SkDVector qV = nearby.dxdyAtT(locals[0][0]);
                double cubicT = (found - 1 + liner[1][0]) / 1000.;
                SkDVector cV = cubic.dxdyAtT(cubicT);
                double qxc = qV.crossCheck(cV);
                double qvLen = qV.length();
                double cvLen = cV.length();
                double maxLen = SkTMax(qvLen, cvLen);
                qxc /= maxLen;
//.........这里部分代码省略.........
开发者ID:Adenilson,项目名称:skia,代码行数:101,代码来源:PathOpsCubicQuadIntersectionTest.cpp

示例5: ComplexBreak

int SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) {
    SkDCubic cubic;
    cubic.set(pointsPtr);
    if (cubic.monotonicInX() && cubic.monotonicInY()) {
        return 0;
    }
    SkScalar d[3];
    SkCubicType cubicType = SkClassifyCubic(pointsPtr, d);
    switch (cubicType) {
        case kLoop_SkCubicType: {
            // crib code from gpu path utils that finds t values where loop self-intersects
            // use it to find mid of t values which should be a friendly place to chop
            SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
            SkScalar ls = d[1] - tempSqrt;
            SkScalar lt = 2.f * d[0];
            SkScalar ms = d[1] + tempSqrt;
            SkScalar mt = 2.f * d[0];
            if (roughly_between(0, ls, lt) && roughly_between(0, ms, mt)) {
                ls = ls / lt;
                ms = ms / mt;
                SkASSERT(roughly_between(0, ls, 1) && roughly_between(0, ms, 1));
                t[0] = (ls + ms) / 2;
                SkASSERT(roughly_between(0, *t, 1));
                return (int) (t[0] > 0 && t[0] < 1);
            }
        }
        // fall through if no t value found
        case kSerpentine_SkCubicType:
        case kCusp_SkCubicType: {
            double inflectionTs[2];
            int infTCount = cubic.findInflections(inflectionTs);
            double maxCurvature[3];
            int roots = cubic.findMaxCurvature(maxCurvature);
    #if DEBUG_CUBIC_SPLIT
            SkDebugf("%s\n", __FUNCTION__);
            cubic.dump();
            for (int index = 0; index < infTCount; ++index) {
                SkDebugf("inflectionsTs[%d]=%1.9g ", index, inflectionTs[index]);
                SkDPoint pt = cubic.ptAtT(inflectionTs[index]);
                SkDVector dPt = cubic.dxdyAtT(inflectionTs[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
            for (int index = 0; index < roots; ++index) {
                SkDebugf("maxCurvature[%d]=%1.9g ", index, maxCurvature[index]);
                SkDPoint pt = cubic.ptAtT(maxCurvature[index]);
                SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]);
                SkDLine perp = {{pt - dPt, pt + dPt}};
                perp.dump();
            }
    #endif
            if (infTCount == 2) {
                for (int index = 0; index < roots; ++index) {
                    if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1])) {
                        t[0] = maxCurvature[index];
                        return (int) (t[0] > 0 && t[0] < 1);
                    }
                }
            } else {
                int resultCount = 0;
                // FIXME: constant found through experimentation -- maybe there's a better way....
                double precision = cubic.calcPrecision() * 2;
                for (int index = 0; index < roots; ++index) {
                    double testT = maxCurvature[index];
                    if (0 >= testT || testT >= 1) {
                        continue;
                    }
                    // don't call dxdyAtT since we want (0,0) results
                    SkDVector dPt = { derivative_at_t(&cubic.fPts[0].fX, testT),
                            derivative_at_t(&cubic.fPts[0].fY, testT) };
                    double dPtLen = dPt.length();
                    if (dPtLen < precision) {
                        t[resultCount++] = testT;
                    }
                }
                if (!resultCount && infTCount == 1) {
                    t[0] = inflectionTs[0];
                    resultCount = (int) (t[0] > 0 && t[0] < 1);
                }
                return resultCount;
            }
        }
        default:
            ;
    }
    return 0;
}
开发者ID:Wafflespeanut,项目名称:gecko-dev,代码行数:87,代码来源:SkPathOpsCubic.cpp


注:本文中的SkDCubic::calcPrecision方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。