本文整理汇总了C++中SizeOptions类的典型用法代码示例。如果您正苦于以下问题:C++ SizeOptions类的具体用法?C++ SizeOptions怎么用?C++ SizeOptions使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SizeOptions类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GolombRuler
/// Actual model
GolombRuler(const SizeOptions& opt)
: IntMinimizeScript(opt),
m(*this,opt.size(),0,
(opt.size() < 31) ? (1 << (opt.size()-1))-1 : Int::Limits::max) {
// Assume first mark to be zero
rel(*this, m[0], IRT_EQ, 0);
// Order marks
rel(*this, m, IRT_LE);
// Number of marks and differences
const int n = m.size();
const int n_d = (n*n-n)/2;
// Array of differences
IntVarArgs d(n_d);
// Setup difference constraints
for (int k=0, i=0; i<n-1; i++)
for (int j=i+1; j<n; j++, k++)
// d[k] is m[j]-m[i] and must be at least sum of first j-i integers
rel(*this, d[k] = expr(*this, m[j]-m[i]),
IRT_GQ, (j-i)*(j-i+1)/2);
distinct(*this, d, opt.icl());
// Symmetry breaking
if (n > 2)
rel(*this, d[0], IRT_LE, d[n_d-1]);
branch(*this, m, INT_VAR_NONE(), INT_VAL_MIN());
}
示例2: Photo
/// Actual model
Photo(const SizeOptions& opt) :
IntMinimizeScript(opt),
spec(opt.size() == 0 ? p_small : p_large),
pos(*this,spec.n_names, 0, spec.n_names-1),
violations(*this,0,spec.n_prefs)
{
// Map preferences to violation
BoolVarArgs viol(spec.n_prefs);
for (int i=0; i<spec.n_prefs; i++) {
int pa = spec.prefs[2*i+0];
int pb = spec.prefs[2*i+1];
viol[i] = expr(*this, abs(pos[pa]-pos[pb]) > 1);
}
rel(*this, violations == sum(viol));
distinct(*this, pos, opt.icl());
// Break some symmetries
rel(*this, pos[0] < pos[1]);
if (opt.branching() == BRANCH_NONE) {
branch(*this, pos, INT_VAR_NONE(), INT_VAL_MIN());
} else {
branch(*this, pos, tiebreak(INT_VAR_DEGREE_MAX(),INT_VAR_SIZE_MIN()),
INT_VAL_MIN());
}
}
示例3: Sudoku
Sudoku(const SizeOptions& opt) : x(*this, 9 * 9, 1, 9) {
Matrix<IntVarArray> m(x, 9, 9);
for (int i = 0; i < 9; i++) {
distinct(*this, m.row(i), opt.icl());
distinct(*this, m.col(i), opt.icl());
}
for (int i = 0; i < 9; i += 3) {
for (int j = 0; j < 9; j += 3) {
distinct(*this, m.slice(i, i + 3, j, j + 3), opt.icl());
}
}
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (int v = sudokuField(board, i, j)) {
//Here the m(i, j) is the element in colomn i and row j.
rel(*this, m(i, j), IRT_EQ, v);
}
}
}
branch(*this, x, INT_VAR_NONE(), INT_VAL_SPLIT_MIN());
}
示例4: Coins3
Coins3(const SizeOptions& opt)
:
num_coins_val(opt.size()),
x(*this, n, 0, 99),
num_coins(*this, 0, 99)
{
// values of the coins
int _variables[] = {1, 2, 5, 10, 25, 50};
IntArgs variables(n, _variables);
// sum the number of coins
linear(*this, x, IRT_EQ, num_coins, opt.icl());
// This is the "main loop":
// Checks that all changes from 1 to 99 can be made
for(int j = 0; j < 99; j++) {
IntVarArray tmp(*this, n, 0, 99);
linear(*this, variables, tmp, IRT_EQ, j, opt.icl());
for(int i = 0; i < n; i++) {
rel(*this, tmp[i] <= x[i], opt.icl());
}
}
// set the number of coins (via opt.size())
// don't forget
// -search dfs
if (num_coins_val) {
rel(*this, num_coins == num_coins_val, opt.icl());
}
branch(*this, x, INT_VAR_SIZE_MAX(), INT_VAL_MIN());
}
示例5: QueenArmies
/// Constructor
QueenArmies(const SizeOptions& opt) :
n(opt.size()),
U(*this, IntSet::empty, IntSet(0, n*n)),
W(*this, IntSet::empty, IntSet(0, n*n)),
w(*this, n*n, 0, 1),
b(*this, n*n, 0, 1),
q(*this, 0, n*n)
{
// Basic rules of the model
for (int i = n*n; i--; ) {
// w[i] means that no blacks are allowed on A[i]
rel(*this, w[i] == (U || A[i]));
// Make sure blacks and whites are disjoint.
rel(*this, !w[i] || !b[i]);
// If i in U, then b[i] has a piece.
rel(*this, b[i] == (singleton(i) <= U));
}
// Connect optimization variable to number of pieces
linear(*this, w, IRT_EQ, q);
linear(*this, b, IRT_GQ, q);
// Connect cardinality of U to the number of black pieces.
IntVar unknowns = expr(*this, cardinality(U));
rel(*this, q <= unknowns);
linear(*this, b, IRT_EQ, unknowns);
if (opt.branching() == BRANCH_NAIVE) {
branch(*this, w, INT_VAR_NONE, INT_VAL_MAX);
branch(*this, b, INT_VAR_NONE, INT_VAL_MAX);
} else {
QueenBranch::post(*this);
assign(*this, b, INT_ASSIGN_MAX);
}
}
示例6: TSP
/// Actual model
TSP(const SizeOptions& opt)
: p(ps[opt.size()]),
succ(*this, p.size(), 0, p.size()-1),
total(*this, 0, p.max()) {
int n = p.size();
// Cost matrix
IntArgs c(n*n, p.d());
for (int i=n; i--; )
for (int j=n; j--; )
if (p.d(i,j) == 0)
rel(*this, succ[i], IRT_NQ, j);
// Cost of each edge
IntVarArgs costs(*this, n, Int::Limits::min, Int::Limits::max);
// Enforce that the succesors yield a tour with appropriate costs
circuit(*this, c, succ, costs, total, opt.icl());
// Just assume that the circle starts forwards
{
IntVar p0(*this, 0, n-1);
element(*this, succ, p0, 0);
rel(*this, p0, IRT_LE, succ[0]);
}
// First enumerate cost values, prefer those that maximize cost reduction
branch(*this, costs, INT_VAR_REGRET_MAX_MAX(), INT_VAL_SPLIT_MIN());
// Then fix the remaining successors
branch(*this, succ, INT_VAR_MIN_MIN(), INT_VAL_MIN());
}
示例7: SetCovering
SetCovering(const SizeOptions& opt)
:
x(*this, num_alternatives, 0, 1),
z(*this, 0, 999999)
{
// costs per alternative
int _costs[] = {19, 16, 18, 13, 15, 19, 15, 17, 16, 15};
IntArgs costs(num_alternatives, _costs);
// the alternatives and the objects they contain
int _a[] = {
// 1 2 3 4 5 6 7 8 the objects
1,0,0,0,0,1,0,0, // alternative 1
0,1,0,0,0,1,0,1, // alternative 2
1,0,0,1,0,0,1,0, // alternative 3
0,1,1,0,1,0,0,0, // alternative 4
0,1,0,0,1,0,0,0, // alternative 5
0,1,1,0,0,0,0,0, // alternative 6
0,1,1,1,0,0,0,0, // alternative 7
0,0,0,1,1,0,0,1, // alternative 8
0,0,1,0,0,1,0,1, // alternative 9
1,0,0,0,0,1,1,0, // alternative 10
};
IntArgs a(num_alternatives*num_objects, _a);
for(int j = 0; j < num_objects; j++) {
IntVarArgs tmp;
for(int i = 0; i < num_alternatives; i++) {
tmp << expr(*this, x[i]*a[i*num_objects+j]);
}
if (opt.size() == 0) {
// set partition problem:
// objects must be covered _exactly_ once
rel(*this, sum(tmp) == 1);
} else {
// set covering problem
// all objects must be covered _at least_ once
rel(*this, sum(tmp) >= 1);
}
}
if (opt.search() == SEARCH_DFS) {
if (opt.size() == 0) {
rel(*this, z <= 49);
} else {
rel(*this, z <= 45);
}
}
linear(*this, costs, x, IRT_EQ, z);
branch(*this, x, INT_VAR_NONE(), INT_VAL_MIN());
}
示例8: OpenShop
/// The actual problem
OpenShop(const SizeOptions& opt)
: spec(examples[opt.size()]),
b(*this, (spec.n+spec.m-2)*spec.n*spec.m/2, 0,1),
makespan(*this, 0, Int::Limits::max),
_start(*this, spec.m*spec.n, 0, Int::Limits::max) {
Matrix<IntVarArray> start(_start, spec.m, spec.n);
IntArgs _dur(spec.m*spec.n, spec.p);
Matrix<IntArgs> dur(_dur, spec.m, spec.n);
int minmakespan;
int maxmakespan;
crosh(dur, minmakespan, maxmakespan);
rel(*this, makespan <= maxmakespan);
rel(*this, makespan >= minmakespan);
int k=0;
for (int m=0; m<spec.m; m++)
for (int j0=0; j0<spec.n-1; j0++)
for (int j1=j0+1; j1<spec.n; j1++) {
// The tasks on machine m of jobs j0 and j1 must be disjoint
rel(*this,
b[k] == (start(m,j0) + dur(m,j0) <= start(m,j1)));
rel(*this,
b[k++] == (start(m,j1) + dur(m,j1) > start(m,j0)));
}
for (int j=0; j<spec.n; j++)
for (int m0=0; m0<spec.m-1; m0++)
for (int m1=m0+1; m1<spec.m; m1++) {
// The tasks in job j on machine m0 and m1 must be disjoint
rel(*this,
b[k] == (start(m0,j) + dur(m0,j) <= start(m1,j)));
rel(*this,
b[k++] == (start(m1,j) + dur(m1,j) > start(m0,j)));
}
// The makespan is greater than the end time of the latest job
for (int m=0; m<spec.m; m++) {
for (int j=0; j<spec.n; j++) {
rel(*this, start(m,j) + dur(m,j) <= makespan);
}
}
// First branch over the precedences
branch(*this, b, INT_VAR_AFC_MAX(opt.decay()), INT_VAL_MAX());
// When the precedences are fixed, simply assign the start times
assign(*this, _start, INT_ASSIGN_MIN());
// When the start times are fixed, use the tightest makespan
assign(*this, makespan, INT_ASSIGN_MIN());
}
示例9: distinctlinear
/// Post a distinct-linear constraint on variables \a x with sum \a c
void distinctlinear(Cache& dc, const IntVarArgs& x, int c,
const SizeOptions& opt) {
int n=x.size();
if (opt.model() == MODEL_DECOMPOSE) {
if (n < 8)
linear(*this, x, IRT_EQ, c, opt.icl());
else if (n == 8)
rel(*this, x, IRT_NQ, 9*(9+1)/2 - c);
distinct(*this, x, opt.icl());
} else {
switch (n) {
case 0:
return;
case 1:
rel(*this, x[0], IRT_EQ, c);
return;
case 8:
// Prune the single missing digit
rel(*this, x, IRT_NQ, 9*(9+1)/2 - c);
break;
case 9:
break;
default:
if (c == n*(n+1)/2) {
// sum has unique decomposition: 1 + ... + n
rel(*this, x, IRT_LQ, n);
} else if (c == n*(n+1)/2 + 1) {
// sum has unique decomposition: 1 + ... + n-1 + n+1
rel(*this, x, IRT_LQ, n+1);
rel(*this, x, IRT_NQ, n);
} else if (c == 9*(9+1)/2 - (9-n)*(9-n+1)/2) {
// sum has unique decomposition: (9-n+1) + (9-n+2) + ... + 9
rel(*this, x, IRT_GQ, 9-n+1);
} else if (c == 9*(9+1)/2 - (9-n)*(9-n+1)/2 + 1) {
// sum has unique decomposition: (9-n) + (9-n+2) + ... + 9
rel(*this, x, IRT_GQ, 9-n);
rel(*this, x, IRT_NQ, 9-n+1);
} else {
extensional(*this, x, dc.get(n,c));
return;
}
}
distinct(*this, x, opt.icl());
}
}
示例10: AllInterval
/// Actual model
AllInterval(const SizeOptions& opt) :
x(*this, opt.size(), 0, opt.size()-1),
d(*this, opt.size()-1, 1, opt.size()-1) {
const int n = x.size();
// Set up variables for distance
for (int i=0; i<n-1; i++)
rel(*this, d[i] == abs(x[i+1]-x[i]), opt.icl());
distinct(*this, x, opt.icl());
distinct(*this, d, opt.icl());
// Break mirror symmetry
rel(*this, x[0], IRT_LE, x[1]);
// Break symmetry of dual solution
rel(*this, d[0], IRT_GR, d[n-2]);
branch(*this, x, INT_VAR_SIZE_MIN(), INT_VAL_SPLIT_MIN());
}
示例11: AllEqual
// Actual model
AllEqual(const SizeOptions& opt) :
x(*this, n, 0, 6)
{
all_equal(*this, x, n, opt.icl());
// branching
branch(*this, x, INT_VAR_SIZE_MIN(), INT_VAL_MIN());
}
示例12: LatinSquares
LatinSquares(const SizeOptions& opt)
:
n(opt.size()),
x(*this, n*n, 1, n) {
// Matrix wrapper for the x grid
Matrix<IntVarArray> m(x, n, n);
latin_square(*this, m, opt.icl());
// Symmetry breaking. 0 is upper left column
if (opt.symmetry() == SYMMETRY_MIN) {
rel(*this, x[0] == 1, opt.icl());
}
branch(*this, x, INT_VAR_SIZE_MIN(), INT_VAL_RANGE_MAX());
}
示例13: WordSquare
/// Actual model
WordSquare(const SizeOptions& opt)
: w_l(opt.size()), letters(*this, w_l*w_l) {
// Initialize letters
Matrix<IntVarArray> ml(letters, w_l, w_l);
for (int i=0; i<w_l; i++)
for (int j=i; j<w_l; j++)
ml(i,j) = ml(j,i) = IntVar(*this, 'a','z');
// Number of words with that length
const int n_w = dict.words(w_l);
// Initialize word array
IntVarArgs words(*this, w_l, 0, n_w-1);
// All words must be different
distinct(*this, words);
// Link words with letters
for (int i=0; i<w_l; i++) {
// Map each word to i-th letter in that word
IntSharedArray w2l(n_w);
for (int n=n_w; n--; )
w2l[n]=dict.word(w_l,n)[i];
for (int j=0; j<w_l; j++)
element(*this, w2l, words[j], ml(i,j));
}
// Symmetry breaking: the last word must be later in the wordlist
rel(*this, words[0], IRT_LE, words[w_l-1]);
switch (opt.branching()) {
case BRANCH_WORDS:
// Branch by assigning words
branch(*this, words, INT_VAR_SIZE_MIN(), INT_VAL_SPLIT_MIN());
break;
case BRANCH_LETTERS:
// Branch by assigning letters
branch(*this, letters, INT_VAR_AFC_SIZE_MAX(opt.decay()), INT_VAL_MIN());
break;
}
}
示例14: Partition
/// Actual model
Partition(const SizeOptions& opt)
: x(*this,opt.size(),1,2*opt.size()),
y(*this,opt.size(),1,2*opt.size()) {
const int n = opt.size();
// Break symmetries by ordering numbers in each group
rel(*this, x, IRT_LE);
rel(*this, y, IRT_LE);
rel(*this, x[0], IRT_LE, y[0]);
IntVarArgs xy(2*n);
for (int i = n; i--; ) {
xy[i] = x[i]; xy[n+i] = y[i];
}
distinct(*this, xy, opt.icl());
IntArgs c(2*n);
for (int i = n; i--; ) {
c[i] = 1; c[n+i] = -1;
}
linear(*this, c, xy, IRT_EQ, 0);
// Array of products
IntVarArgs sxy(2*n), sx(n), sy(n);
for (int i = n; i--; ) {
sx[i] = sxy[i] = expr(*this, sqr(x[i]));
sy[i] = sxy[n+i] = expr(*this, sqr(y[i]));
}
linear(*this, c, sxy, IRT_EQ, 0);
// Redundant constraints
linear(*this, x, IRT_EQ, 2*n*(2*n+1)/4);
linear(*this, y, IRT_EQ, 2*n*(2*n+1)/4);
linear(*this, sx, IRT_EQ, 2*n*(2*n+1)*(4*n+1)/12);
linear(*this, sy, IRT_EQ, 2*n*(2*n+1)*(4*n+1)/12);
branch(*this, xy, INT_VAR_AFC_SIZE_MAX(opt.decay()), INT_VAL_MIN());
}
示例15: SetCovering
SetCovering(const SizeOptions& opt)
:
min_distance(opt.size()),
x(*this, num_cities, 0, 1),
z(*this, 0, num_cities)
{
// distance between the cities
int distance[] =
{
0,10,20,30,30,20,
10, 0,25,35,20,10,
20,25, 0,15,30,20,
30,35,15, 0,15,25,
30,20,30,15, 0,14,
20,10,20,25,14, 0
};
// z = sum of placed fire stations
linear(*this, x, IRT_EQ, z, opt.icl());
// ensure that all cities are covered by at least one fire station
for(int i = 0; i < num_cities; i++) {
IntArgs in_distance(num_cities); // the cities within the distance
for(int j = 0; j < num_cities; j++) {
if (distance[i*num_cities+j] <= min_distance) {
in_distance[j] = 1;
} else {
in_distance[j] = 0;
}
}
linear(*this, in_distance, x, IRT_GQ, 1, opt.icl());
}
branch(*this, x, INT_VAR_SIZE_MAX(), INT_VAL_SPLIT_MIN());
}