本文整理汇总了C++中SimulatorTimer::currentTime方法的典型用法代码示例。如果您正苦于以下问题:C++ SimulatorTimer::currentTime方法的具体用法?C++ SimulatorTimer::currentTime怎么用?C++ SimulatorTimer::currentTime使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SimulatorTimer
的用法示例。
在下文中一共展示了SimulatorTimer::currentTime方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computePorevolume
SimulatorReport SimulatorPolymer::Impl::run(SimulatorTimer& timer,
PolymerState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_satvol[2] = { 0.0 };
double init_polymass = 0.0;
double satvol[2] = { 0.0 };
double polymass = 0.0;
double polymass_adsorbed = 0.0;
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
double tot_polyinj = 0.0;
double tot_polyprod = 0.0;
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
outputState(grid_, state, timer.currentStepNum(), output_dir_);
}
// Solve pressure.
do {
pressure_timer.start();
psolver_.solve(timer.currentStepLength(), state, well_state);
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
} while (false);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Find inflow rate.
const double current_time = timer.currentTime();
double stepsize = timer.currentStepLength();
const double inflowc0 = poly_inflow_(current_time + 1e-5*stepsize);
const double inflowc1 = poly_inflow_(current_time + (1.0 - 1e-5)*stepsize);
if (inflowc0 != inflowc1) {
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
}
const double inflow_c = inflowc0;
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &porevol[0], &transport_src[0], stepsize, inflow_c,
state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(props_, poly_props_,
state.saturation(), state.concentration(), state.maxconcentration(),
transport_src, timer.currentStepLength(), inflow_c,
injected, produced, polyinj, polyprod);
if (use_segregation_split_) {
tsolver_.solveGravity(columns_, &porevol[0], stepsize,
state.saturation(), state.concentration(), state.maxconcentration());
//.........这里部分代码省略.........
示例2: computePorevolume
//.........这里部分代码省略.........
ptime += pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(props_, wells_, well_state, transport_src);
// Find inflow rate.
const double current_time = timer.currentTime();
double stepsize = timer.currentStepLength();
polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], initial_pressure,
state.pressure(), &initial_porevol[0], &porevol[0],
&transport_src[0], &polymer_inflow_c[0], stepsize,
state.saturation(), state.surfacevol(),
state.concentration(), state.maxconcentration());
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
double substep_polyinj = 0.0;
double substep_polyprod = 0.0;
Opm::computeInjectedProduced(props_, poly_props_,
state,
transport_src, polymer_inflow_c, stepsize,
substep_injected, substep_produced,
substep_polyinj, substep_polyprod);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
示例3: computePorevolume
//.........这里部分代码省略.........
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// The reports below are geared towards two phases only.
#if 0
// Report mass balances.
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
injected, produced);
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance report.\n";
std::cout << " Injected surface volumes: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1] << std::endl;
std::cout << " Produced surface volumes: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1] << std::endl;
std::cout << " Total inj surface volumes: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1] << std::endl;
std::cout << " Total prod surface volumes: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1] << std::endl;
const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
std::cout << " Initial - inplace + inj - prod: "
<< std::setw(width) << balance[0]
<< std::setw(width) << balance[1]
<< std::endl;
std::cout << " Relative mass error: "
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
<< std::endl;
std::cout.precision(8);
// Make well reports.
watercut.push(timer.currentTime() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
timer.currentTime() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
#endif
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
}
}
if (output_) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
#if 0
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
#endif
tstep_os.close();
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = stime;
report.transport_time = 0.0;
report.total_time = total_timer.secsSinceStart();
return report;
}