当前位置: 首页>>代码示例>>C++>>正文


C++ SimulatorTimer::currentTime方法代码示例

本文整理汇总了C++中SimulatorTimer::currentTime方法的典型用法代码示例。如果您正苦于以下问题:C++ SimulatorTimer::currentTime方法的具体用法?C++ SimulatorTimer::currentTime怎么用?C++ SimulatorTimer::currentTime使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SimulatorTimer的用法示例。


在下文中一共展示了SimulatorTimer::currentTime方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: computePorevolume

    SimulatorReport SimulatorPolymer::Impl::run(SimulatorTimer& timer,
                                                PolymerState& state,
                                                WellState& well_state)
    {
        std::vector<double> transport_src;

        // Initialisation.
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);


        // Main simulation loop.
        Opm::time::StopWatch pressure_timer;
        double ptime = 0.0;
        Opm::time::StopWatch transport_timer;
        double ttime = 0.0;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        double init_satvol[2] = { 0.0 };
        double init_polymass = 0.0;
        double satvol[2] = { 0.0 };
        double polymass = 0.0;
        double polymass_adsorbed = 0.0;
        double injected[2] = { 0.0 };
        double produced[2] = { 0.0 };
        double polyinj = 0.0;
        double polyprod = 0.0;
        double tot_injected[2] = { 0.0 };
        double tot_produced[2] = { 0.0 };
        double tot_polyinj = 0.0;
        double tot_polyprod = 0.0;
        Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
        std::cout << "\nInitial saturations are    " << init_satvol[0]/tot_porevol_init
                  << "    " << init_satvol[1]/tot_porevol_init << std::endl;
        Opm::Watercut watercut;
        watercut.push(0.0, 0.0, 0.0);
        Opm::WellReport wellreport;
        std::vector<double> fractional_flows;
        std::vector<double> well_resflows_phase;
        if (wells_) {
            well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
            wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
        }
        for (; !timer.done(); ++timer) {
            // Report timestep and (optionally) write state to disk.
            timer.report(std::cout);
            if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
                outputState(grid_, state, timer.currentStepNum(), output_dir_);
            }

            // Solve pressure.
            do {
                pressure_timer.start();
                psolver_.solve(timer.currentStepLength(), state, well_state);
                pressure_timer.stop();
                double pt = pressure_timer.secsSinceStart();
                std::cout << "Pressure solver took:  " << pt << " seconds." << std::endl;
                ptime += pt;
            } while (false);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // Process transport sources (to include bdy terms and well flows).
            Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
                                        wells_, well_state.perfRates(), transport_src);

            // Find inflow rate.
            const double current_time = timer.currentTime();
            double stepsize = timer.currentStepLength();
            const double inflowc0 = poly_inflow_(current_time + 1e-5*stepsize);
            const double inflowc1 = poly_inflow_(current_time + (1.0 - 1e-5)*stepsize);
            if (inflowc0 != inflowc1) {
                std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
            }
            const double inflow_c = inflowc0;

            // Solve transport.
            transport_timer.start();
            if (num_transport_substeps_ != 1) {
                stepsize /= double(num_transport_substeps_);
                std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
            }
            for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
                tsolver_.solve(&state.faceflux()[0], &porevol[0], &transport_src[0], stepsize, inflow_c,
                               state.saturation(), state.concentration(), state.maxconcentration());
                Opm::computeInjectedProduced(props_, poly_props_,
                                             state.saturation(), state.concentration(), state.maxconcentration(),
                                             transport_src, timer.currentStepLength(), inflow_c,
                                             injected, produced, polyinj, polyprod);
                if (use_segregation_split_) {
                    tsolver_.solveGravity(columns_, &porevol[0], stepsize,
                                          state.saturation(), state.concentration(), state.maxconcentration());
//.........这里部分代码省略.........
开发者ID:hnil,项目名称:opm-polymer,代码行数:101,代码来源:SimulatorPolymer.cpp

示例2: computePorevolume


//.........这里部分代码省略.........
                ptime += pt;

                // Optionally, check if well controls are satisfied.
                if (check_well_controls_) {
                    Opm::computePhaseFlowRatesPerWell(*wells_,
                                                      well_state.perfRates(),
                                                      fractional_flows,
                                                      well_resflows_phase);
                    std::cout << "Checking well conditions." << std::endl;
                    // For testing we set surface := reservoir
                    well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
                    ++well_control_iteration;
                    if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
                        OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
                    }
                    if (!well_control_passed) {
                        std::cout << "Well controls not passed, solving again." << std::endl;
                    } else {
                        std::cout << "Well conditions met." << std::endl;
                    }
                }
            } while (!well_control_passed);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                initial_porevol = porevol;
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // Process transport sources (to include bdy terms and well flows).
            Opm::computeTransportSource(props_, wells_, well_state, transport_src);

            // Find inflow rate.
            const double current_time = timer.currentTime();
            double stepsize = timer.currentStepLength();
            polymer_inflow_.getInflowValues(current_time, current_time + stepsize, polymer_inflow_c);

            // Solve transport.
            transport_timer.start();
            if (num_transport_substeps_ != 1) {
                stepsize /= double(num_transport_substeps_);
                std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
            }
            double injected[2] = { 0.0 };
            double produced[2] = { 0.0 };
            double polyinj = 0.0;
            double polyprod = 0.0;
            for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
                tsolver_.solve(&state.faceflux()[0], initial_pressure,
                               state.pressure(), &initial_porevol[0], &porevol[0],
                               &transport_src[0], &polymer_inflow_c[0], stepsize,
                               state.saturation(), state.surfacevol(),
                               state.concentration(), state.maxconcentration());
                double substep_injected[2] = { 0.0 };
                double substep_produced[2] = { 0.0 };
                double substep_polyinj = 0.0;
                double substep_polyprod = 0.0;
                Opm::computeInjectedProduced(props_, poly_props_,
                                             state,
                                             transport_src, polymer_inflow_c, stepsize,
                                             substep_injected, substep_produced,
                                             substep_polyinj, substep_polyprod);
                injected[0] += substep_injected[0];
                injected[1] += substep_injected[1];
                produced[0] += substep_produced[0];
                produced[1] += substep_produced[1];
开发者ID:flikka,项目名称:opm-polymer,代码行数:67,代码来源:SimulatorCompressiblePolymer.cpp

示例3: computePorevolume


//.........这里部分代码省略.........
                    std::cout << "Checking well conditions." << std::endl;
                    // For testing we set surface := reservoir
                    well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
                    ++well_control_iteration;
                    if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
                        OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
                    }
                    if (!well_control_passed) {
                        std::cout << "Well controls not passed, solving again." << std::endl;
                    } else {
                        std::cout << "Well conditions met." << std::endl;
                    }
                }
            } while (!well_control_passed);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                initial_porevol = porevol;
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // The reports below are geared towards two phases only.
#if 0
            // Report mass balances.
            double injected[2] = { 0.0 };
            double produced[2] = { 0.0 };
            Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
                                         injected, produced);
            Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
            tot_injected[0] += injected[0];
            tot_injected[1] += injected[1];
            tot_produced[0] += produced[0];
            tot_produced[1] += produced[1];
            std::cout.precision(5);
            const int width = 18;
            std::cout << "\nMass balance report.\n";
            std::cout << "    Injected surface volumes:      "
                      << std::setw(width) << injected[0]
                      << std::setw(width) << injected[1] << std::endl;
            std::cout << "    Produced surface volumes:      "
                      << std::setw(width) << produced[0]
                      << std::setw(width) << produced[1] << std::endl;
            std::cout << "    Total inj surface volumes:     "
                      << std::setw(width) << tot_injected[0]
                      << std::setw(width) << tot_injected[1] << std::endl;
            std::cout << "    Total prod surface volumes:    "
                      << std::setw(width) << tot_produced[0]
                      << std::setw(width) << tot_produced[1] << std::endl;
            const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
                                        init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
            std::cout << "    Initial - inplace + inj - prod: "
                      << std::setw(width) << balance[0]
                      << std::setw(width) << balance[1]
                      << std::endl;
            std::cout << "    Relative mass error:            "
                      << std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
                      << std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
                      << std::endl;
            std::cout.precision(8);

            // Make well reports.
            watercut.push(timer.currentTime() + timer.currentStepLength(),
                          produced[0]/(produced[0] + produced[1]),
                          tot_produced[0]/tot_porevol_init);
            if (wells_) {
                wellreport.push(props_, *wells_,
                                state.pressure(), state.surfacevol(), state.saturation(),
                                timer.currentTime() + timer.currentStepLength(),
                                well_state.bhp(), well_state.perfRates());
            }
#endif
            sreport.total_time =  step_timer.secsSinceStart();
            if (output_) {
                sreport.reportParam(tstep_os);
            }
        }

        if (output_) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
#if 0
            outputWaterCut(watercut, output_dir_);
            if (wells_) {
                outputWellReport(wellreport, output_dir_);
            }
#endif
            tstep_os.close();
        }

        total_timer.stop();

        SimulatorReport report;
        report.pressure_time = stime;
        report.transport_time = 0.0;
        report.total_time = total_timer.secsSinceStart();
        return report;
    }
开发者ID:rolk,项目名称:opm-autodiff,代码行数:101,代码来源:SimulatorFullyImplicitBlackoil.cpp


注:本文中的SimulatorTimer::currentTime方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。