本文整理汇总了C++中SequenceSet类的典型用法代码示例。如果您正苦于以下问题:C++ SequenceSet类的具体用法?C++ SequenceSet怎么用?C++ SequenceSet使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SequenceSet类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: total_length
size_t total_length( SequenceSet const& set )
{
return std::accumulate( set.begin(), set.end(), 0,
[] (size_t c, Sequence const& s) {
return c + s.length();
}
);
}
示例2: filter_max_sequence_length
void filter_max_sequence_length( SequenceSet& set, size_t max_length )
{
size_t index = 0;
while( index < set.size() ) {
if( set.at(index).length() > max_length ) {
set.remove(index);
} else {
++index;
}
}
}
示例3: filter_min_max_sequence_length
void filter_min_max_sequence_length( SequenceSet& set, size_t min_length, size_t max_length )
{
size_t index = 0;
while( index < set.size() ) {
auto len = set.at(index).length();
if( len < min_length || len > max_length ) {
set.remove(index);
} else {
++index;
}
}
}
示例4: expected
void SessionHandler::expected(const SequenceSet& commands, const Array& /*fragments*/) {
checkAttached();
if (getState()->hasState()) { // Replay
if (commands.empty()) throw IllegalStateException(
QPID_MSG(getState()->getId() << ": has state but client is attaching as new session."));
// TODO aconway 2008-05-12: support replay of partial commands.
// Here we always round down to the last command boundary.
SessionPoint expectedPoint = commands.empty() ? SequenceNumber(0) : SessionPoint(commands.front(),0);
SessionState::ReplayRange replay = getState()->senderExpected(expectedPoint);
sendCommandPoint(expectedPoint);
std::for_each(replay.begin(), replay.end(), out); // replay
}
else
sendCommandPoint(getState()->senderGetCommandPoint());
}
示例5: gap_sites
utils::Bitvector gap_sites( SequenceSet const& set, std::string const& gap_chars )
{
// Edge case.
if( set.size() == 0 ) {
return utils::Bitvector();
}
// Init result bitvector to all true. Then, for every site that is not a gap, reset to false.
auto result = utils::Bitvector( set[0].length(), true );
// Init lookup array.
auto lookup = utils::CharLookup<bool>( false );
lookup.set_selection_upper_lower( gap_chars, true );
// Process all sequences in the set.
for( auto const& seq : set ) {
if( seq.length() != result.size() ) {
throw std::runtime_error(
"Cannot calculate gap_sites() if SequenceSet is not an alignment."
);
}
// Process the sites of the sequence. If it is not a gap, set it to false in the bitvector.
// This way, only sites that are all-gap will remain with value `true` in the end.
for( size_t i = 0; i < seq.length(); ++i ) {
if( ! lookup[ seq[ i ] ] ) {
result.set( i, false );
}
}
}
return result;
}
示例6: checkAttached
void SessionHandler::flush(bool expected, bool confirmed, bool completed) {
checkAttached();
if (expected) {
SequenceSet expectSet;
if (getState()->hasState())
expectSet.add(getState()->receiverGetExpected().command);
peer.expected(expectSet, Array());
}
if (confirmed) {
SequenceSet confirmSet;
if (!getState()->receiverGetUnknownComplete().empty())
confirmSet.add(getState()->receiverGetUnknownComplete().front(),
getState()->receiverGetReceived().command);
peer.confirmed(confirmSet, Array());
}
if (completed)
peer.completed(getState()->receiverGetUnknownComplete(), true);
}
示例7: TEST
TEST( Sequence, PhylipReaderAaSequential )
{
// Skip test if no data availabe.
NEEDS_TEST_DATA;
// Load sequence file.
std::string infile = environment->data_dir + "sequence/aa_3_384_s.phylip";
SequenceSet sset;
PhylipReader()
.label_length( 10 )
.valid_chars( amino_acid_codes_all() )
.read( from_file(infile), sset);
// Check data.
EXPECT_EQ( 3, sset.size() );
EXPECT_EQ( 384, sset[0].length() );
EXPECT_EQ( "CATH_HUMAN", sset[2].label() );
EXPECT_EQ( "G-AVTPVKNQ", sset[0].sites().substr( 160, 10 ) );
}
示例8: computeMIonCPU
void computeMIonCPU(SequenceSet& sequences, Matrix<float>& MI) {
const int numChars = NUMPROTEINCHARS;
const int sequenceLength = sequences.getSequenceLength();
const int numSequences = sequences.getNumberOfSequences();
const double epsilon=1e-6;
timeval start, end;
gettimeofday(&start, 0);
for (int k = 0; k < LOOPCOUNT; k++) {
//iterate over all column combinations
for (int j = 0; j < sequenceLength; j++) {
for (int i = 0; i <= j; i++) {
//absolute number of occurrences of character pairs x,y: N_ij(x,y)
int twoPointOccs[numChars][numChars];
memset(twoPointOccs, 0, sizeof(twoPointOccs));
//iterate through all sequences and compute two-point occurrences
for (int seq = 0; seq < numSequences; seq++)
twoPointOccs[sequences.getData(seq, i)][sequences.getData(seq, j)]++;
/*
puts("===START===");
for (int m=0; m<numChars; m++) {
for (int n=0; n<numChars; n++)
printf("%d %d: %d\n", m, n, twoPointOccs[m][n]);
puts("");
}
puts("===STOP ===");
*/
double MI_ij = 0;
//sum over all x and y
for (int x = 0; x < numChars; x++) {
if (sequences.getOnePointProb(x, i) < epsilon)
continue;
for (int y = 0; y < numChars; y++) {
if (sequences.getOnePointProb(y, j) < epsilon || twoPointOccs[x][y] == 0)
continue;
double p_ij_xy = double(twoPointOccs[x][y]) / double(numSequences);
MI_ij += p_ij_xy * log2(p_ij_xy / (sequences.getOnePointProb(x, i) * sequences.getOnePointProb(y, j)));
}
}
MI.set(i, j, MI_ij);
}
}
}
gettimeofday(&end, 0);
std::cout << "execution time: "
<< (end.tv_sec - start.tv_sec ) * 1000 + ( end.tv_usec - start.tv_usec) / 1000
<< " milliseconds" << std::endl;
}
示例9: completed
void Results::completed(const SequenceSet& set)
{
//call complete on those listeners whose ids fall within the set
Listeners::iterator i = listeners.begin();
while (i != listeners.end()) {
if (set.contains(i->first)) {
i->second->completed();
listeners.erase(i++);
} else {
i++;
}
}
}
示例10: is_alignment
bool is_alignment( SequenceSet const& set )
{
if( set.size() == 0 ) {
return true;
}
size_t length = set[0].length();
for( auto& s : set ) {
if( s.length() != length ) {
return false;
}
}
return true;
}
示例11: parse_seqs_file
void parse_seqs_file (SequenceSet& allSeqs, int& numSeq, char* fname) {
ifstream seq_file(fname);
string tmp_str;
while (getline(seq_file, tmp_str)) {
int seq_len = tmp_str.size();
Sequence ht_tmp_seq (seq_len+1+1, 0);
ht_tmp_seq[0] = '*';
for(int i = 0; i < seq_len; i ++)
ht_tmp_seq[i+1] = tmp_str.at(i);
ht_tmp_seq[seq_len+1] = '#';
allSeqs.push_back(ht_tmp_seq);
++ numSeq;
}
seq_file.close();
}
示例12: writeClusterView
void writeClusterView( string fpath , SequenceSet& allModelSeqs, SequenceSet& allDataSeqs ){
int numSeq = allDataSeqs.size();
SequenceSet allCOSeqs (numSeq, Sequence(0));
vector<int> pos(numSeq, 0);
while (true) {
set<int> insertion_ids;
for (int i = 0; i < numSeq; i ++) {
if (pos[i] >= allModelSeqs[i].size()) continue;
if (allModelSeqs[i][pos[i]] == '-')
insertion_ids.insert(i);
}
if (insertion_ids.size() != 0) {
// insertion exists
for (int i = 0; i < numSeq; i ++) {
if (insertion_ids.find(i)==insertion_ids.end()) // not in set
allCOSeqs[i].push_back('-');
else { // in set
allCOSeqs[i].push_back(allDataSeqs[i][pos[i]++]);
}
}
} else { // no insertion
for (int i = 0; i < numSeq; i ++)
allCOSeqs[i].push_back(allDataSeqs[i][pos[i]++]);
}
// terminating
bool terminated = true;
for (int i = 0; i < numSeq; i ++)
if (pos[i] != allModelSeqs[i].size()) {
terminated = false;
break;
}
if (terminated) break;
}
ofstream co_out (fpath.c_str());
for (int i = 0; i < numSeq; i ++) {
for (int j = 0; j < allCOSeqs[i].size(); j++) {
co_out << allCOSeqs[i][j];
}
co_out << endl;
}
co_out.close();
}
示例13: CVX_ADMM_MSA
Tensor5D CVX_ADMM_MSA (SequenceSet& allSeqs, vector<int>& lenSeqs, int T2, string& dir_path) {
// 1. initialization
int numSeq = allSeqs.size();
vector<Tensor4D> C (numSeq, Tensor4D(0, Tensor(T2, Matrix(NUM_DNA_TYPE,
vector<double>(NUM_MOVEMENT, 0.0)))));
vector<Tensor4D> W_1 (numSeq, Tensor4D(0, Tensor(T2, Matrix(NUM_DNA_TYPE,
vector<double>(NUM_MOVEMENT, 0.0)))));
vector<Tensor4D> W_2 (numSeq, Tensor4D(0, Tensor(T2, Matrix(NUM_DNA_TYPE,
vector<double>(NUM_MOVEMENT, 0.0)))));
vector<Tensor4D> Y (numSeq, Tensor4D(0, Tensor(T2, Matrix(NUM_DNA_TYPE,
vector<double>(NUM_MOVEMENT, 0.0)))));
tensor5D_init (C, allSeqs, lenSeqs, T2);
tensor5D_init (W_1, allSeqs, lenSeqs, T2);
tensor5D_init (W_2, allSeqs, lenSeqs, T2);
tensor5D_init (Y, allSeqs, lenSeqs, T2);
set_C (C, allSeqs);
// 2. ADMM iteration
int iter = 0;
double mu = MU;
double prev_CoZ = MAX_DOUBLE;
while (iter < MAX_ADMM_ITER) {
// 2a. Subprogram: FrankWolf Algorithm
// NOTE: parallelize this for to enable parallelism
#ifdef PARRALLEL_COMPUTING
#pragma omp parallel for
#endif
for (int n = 0; n < numSeq; n++)
first_subproblem (W_1[n], W_2[n], Y[n], C[n], mu, allSeqs[n]);
// 2b. Subprogram:
second_subproblem (W_1, W_2, Y, mu, allSeqs, lenSeqs);
// 2d. update Y: Y += mu * (W_1 - W_2)
for (int n = 0; n < numSeq; n ++)
tensor4D_lin_update (Y[n], W_1[n], W_2[n], mu);
// 2e. print out tracking info
double CoZ = 0.0;
for (int n = 0; n < numSeq; n++)
CoZ += tensor4D_frob_prod(C[n], W_2[n]);
double W1mW2 = 0.0;
for (int n = 0; n < numSeq; n ++) {
int T1 = W_1[n].size();
for (int i = 0; i < T1; i ++)
for (int j = 0; j < T2; j ++)
for (int d = 0; d < NUM_DNA_TYPE; d ++)
for (int m = 0; m < NUM_MOVEMENT; m ++) {
double value = (W_1[n][i][j][d][m] - W_2[n][i][j][d][m]);
W1mW2 = max( fabs(value), W1mW2 ) ;
}
}
///////////////////////////////////Copy from Main/////////////////////////////////////////
int T2m = T2;
Tensor tensor (T2m, Matrix (NUM_DNA_TYPE, vector<double>(NUM_DNA_TYPE, 0.0)));
Matrix mat_insertion (T2m, vector<double> (NUM_DNA_TYPE, 0.0));
for (int n = 0; n < numSeq; n ++) {
int T1 = W_2[n].size();
for (int i = 0; i < T1; i ++) {
for (int j = 0; j < T2m; j ++) {
for (int d = 0; d < NUM_DNA_TYPE; d ++) {
for (int m = 0; m < NUM_MOVEMENT; m ++) {
if (m == DELETION_A or m == MATCH_A)
tensor[j][d][dna2T3idx('A')] += max(0.0, W_2[n][i][j][d][m]);
else if (m == DELETION_T or m == MATCH_T)
tensor[j][d][dna2T3idx('T')] += max(0.0, W_2[n][i][j][d][m]);
else if (m == DELETION_C or m == MATCH_C)
tensor[j][d][dna2T3idx('C')] += max(0.0, W_2[n][i][j][d][m]);
else if (m == DELETION_G or m == MATCH_G)
tensor[j][d][dna2T3idx('G')] += max(0.0, W_2[n][i][j][d][m]);
else if (m == DELETION_START or m == MATCH_START)
tensor[j][d][dna2T3idx('*')] += max(0.0, W_2[n][i][j][d][m]);
else if (m == DELETION_END or m == MATCH_END)
tensor[j][d][dna2T3idx('#')] += max(0.0, W_2[n][i][j][d][m]);
else if (m == INSERTION)
mat_insertion[j][d] += max(0.0, W_2[n][i][j][d][m]);
}
}
}
}
}
Trace trace (0, Cell(2)); // 1d: j, 2d: ATCG
refined_viterbi_algo (trace, tensor, mat_insertion);
Sequence recSeq;
for (int i = 0; i < trace.size(); i ++)
if (trace[i].action != INSERTION) {
recSeq.push_back(trace[i].acidB);
if (trace[i].acidB == '#') break;
}
////////////////////////////////END copy from MAIN/////////////////////////////////////////////////////
SequenceSet allModelSeqs, allDataSeqs;
double obj_rounded = 0.0;
for (int n = 0; n < numSeq; n ++) {
Sequence model_seq = recSeq, data_seq = allSeqs[n];
data_seq.erase(data_seq.begin());
model_seq.erase(model_seq.begin());
data_seq.erase(data_seq.end()-1);
model_seq.erase(model_seq.end()-1);
//.........这里部分代码省略.........
示例14: second_subproblem
/* We resolve the second subproblem through sky-plane projection */
Sequence second_subproblem (Tensor5D& W_1, Tensor5D& W_2, Tensor5D& Y, double& mu, SequenceSet& allSeqs, vector<int> lenSeqs) {
/*{{{*/
int numSeq = allSeqs.size();
int T2 = W_2[0][0].size();
// reinitialize W_2 to all-zero matrix
for (int n = 0; REINIT_W_ZERO_TOGGLE and n < numSeq; n ++) {
int T1 = W_2[n].size();
for (int i = 0; i < T1; i ++)
for (int j = 0; j < T2; j ++)
for (int d = 0; d < NUM_DNA_TYPE; d ++)
for (int m = 0; m < NUM_MOVEMENT; m ++)
W_2[n][i][j][d][m] = 0.0;
}
vector<Tensor4D> delta (numSeq, Tensor4D(0, Tensor(T2, Matrix(NUM_DNA_TYPE,
vector<double>(NUM_MOVEMENT, 0.0)))));
tensor5D_init (delta, allSeqs, lenSeqs, T2);
Tensor tensor (T2, Matrix (NUM_DNA_TYPE, vector<double>(NUM_DNA_TYPE, 0.0)));
Matrix mat_insertion (T2, vector<double>(NUM_DNA_TYPE, 0.0));
Trace trace (0, Cell(2)); // 1d: j, 2d: ATCG
int fw_iter = -1;
while (fw_iter < MAX_2nd_FW_ITER) {
fw_iter ++;
// 1. compute delta
#ifdef PARRALLEL_COMPUTING
//#pragma omp parallel for
#endif
for (int n = 0; n < numSeq; n ++) {
int T1 = W_2[n].size();
for (int i = 0; i < T1; i ++) {
for (int j = 0; j < T2; j ++)
for (int d = 0; d < NUM_DNA_TYPE; d ++)
for (int m = 0; m < NUM_MOVEMENT; m ++) {
delta[n][i][j][d][m] = -1.0* mu * (W_2[n][i][j][d][m] - W_1[n][i][j][d][m]) + Y[n][i][j][d][m];
#ifdef SECOND_SUBPROBLEM_DEBUG
if (delta[n][i][j][d][m] > 0)
cout <<"delta: " << n << "," << i << "," << j << "," << d << "," << m << ": "
<< delta[n][i][j][d][m] << endl;
#endif
if (m == DELETION_A or m == MATCH_A)
tensor[j][d][dna2T3idx('A')] += max(0.0, delta[n][i][j][d][m]);
else if (m == DELETION_T or m == MATCH_T)
tensor[j][d][dna2T3idx('T')] += max(0.0, delta[n][i][j][d][m]);
else if (m == DELETION_C or m == MATCH_C)
tensor[j][d][dna2T3idx('C')] += max(0.0, delta[n][i][j][d][m]);
else if (m == DELETION_G or m == MATCH_G)
tensor[j][d][dna2T3idx('G')] += max(0.0, delta[n][i][j][d][m]);
else if (m == DELETION_START or m == MATCH_START)
tensor[j][d][dna2T3idx('*')] += max(0.0, delta[n][i][j][d][m]);
else if (m == DELETION_END or m == MATCH_END)
tensor[j][d][dna2T3idx('#')] += max(0.0, delta[n][i][j][d][m]);
else if (m == INSERTION) {
mat_insertion[j][d] += max(0.0, delta[n][i][j][d][m]);
}
}
}
}
#ifdef SECOND_SUBPROBLEM_DEBUG
cout << "tensor transition input list:" << endl;
for (int j = 0; j < T2; j ++)
for (int d = 0; d < NUM_DNA_TYPE; d ++)
for (int k = 0; k < NUM_DNA_TYPE; k ++) {
if (tensor[j][d][k] > 0)
cout << "(" << j << ", " << d << ", " << k << ")=" << tensor[j][d][k] << endl;
}
#endif
double delta_square = 0.0;
for (int n = 0; n < numSeq; n ++)
delta_square += tensor4D_frob_prod (delta[n], delta[n]);
//cout << "delta_square: " << delta_square << endl;
if ( delta_square < 1e-12 ) {
//cout << "small delta. early stop." << endl;
break;
}
// 2. determine the trace: run viterbi algorithm
trace.clear();
refined_viterbi_algo (trace, tensor, mat_insertion);
Tensor5D S (numSeq, Tensor4D(0, Tensor(T2, Matrix(NUM_DNA_TYPE, vector<double>(NUM_MOVEMENT, 0.0)))));
tensor5D_init (S, allSeqs, lenSeqs, T2);
// 3. recover values for S
// 3b. set a number of selected elements to 1
for (int t = 0; t < trace.size(); t++) {
int sj = trace[t].location[0];
int sd = trace[t].location[1];
int sm = dna2T3idx(trace[t].acidB);
// cout << trace[t].acidB;
for (int n = 0; n < numSeq; n ++) {
int T1 = S[n].size();
for (int i = 0; i < T1; i ++) {
for (int m = 0; m < NUM_MOVEMENT; m ++)
if (delta[n][i][sj][sd][m] > 0.0) {
if (m == DEL_BASE_IDX + sm or m == MTH_BASE_IDX + sm)
S[n][i][sj][sd][m] = 1.0;
else if (m == INSERTION and trace[t].action == INSERTION) {
S[n][i][sj][sd][m] = 1.0;
//.........这里部分代码省略.........
示例15: merge_duplicate_sequences
void merge_duplicate_sequences(
SequenceSet& set,
MergeDuplicateSequencesCountPolicy count_policy,
std::string const& counter_prefix
) {
// Helper to keep track of which sequences (at position i in the set) occured how often.
struct Duplicate
{
size_t index;
size_t count;
};
// Find duplicates and count their occurences.
// TODO this is a very memory intense step. find an algo that does not need to copy all sites...
std::unordered_map< std::string, Duplicate > dup_map;
size_t i = 0;
while( i < set.size() ) {
auto& seq = set[i];
if( dup_map.count( seq.sites() ) == 0 ) {
// If it is a new sequence, init the map entry and move to the next sequence.
dup_map[ seq.sites() ].index = i;
dup_map[ seq.sites() ].count = 1;
++i;
} else {
// If we already saw that sequence, increment its counter, and remove the sequence
// from the set. Do not increment i - we deleted a sequence, so staying at the
// position automatically "moves" to the next one.
++dup_map[ seq.sites() ].count;
set.remove(i);
}
}
// We do not need to relabel sequences.
if( count_policy == MergeDuplicateSequencesCountPolicy::kDiscard ) {
return;
}
// Relabel using the counts.
for( size_t j = 0; j < set.size(); ++j ) {
auto& seq = set[j];
// The sequence needs to be in the map, as we added it in the previous step.
// It also needs to have the same index, as we never changed that.
assert( dup_map.count(seq.sites()) > 0 );
assert( dup_map[ seq.sites() ].index == j );
// Append the count to the label.
auto count = dup_map[ seq.sites() ].count;
if( count_policy == MergeDuplicateSequencesCountPolicy::kAppendToLabel ) {
auto new_label = seq.label() + counter_prefix + std::to_string(count);
seq.label( new_label );
} else {
// We already skipped the discard case, so this here should not happen.
assert( false );
}
}
}