本文整理汇总了C++中SelectionDAGBuilder::getValue方法的典型用法代码示例。如果您正苦于以下问题:C++ SelectionDAGBuilder::getValue方法的具体用法?C++ SelectionDAGBuilder::getValue怎么用?C++ SelectionDAGBuilder::getValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SelectionDAGBuilder
的用法示例。
在下文中一共展示了SelectionDAGBuilder::getValue方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: removeDuplicatesGCPtrs
/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
/// is not required for correctness. It's purpose is to reduce the size of
/// StackMap section. It has no effect on the number of spill slots required
/// or the actual lowering.
static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
SmallVectorImpl<const Value *> &Ptrs,
SmallVectorImpl<const Value *> &Relocs,
SelectionDAGBuilder &Builder) {
// This is horribly ineffecient, but I don't care right now
SmallSet<SDValue, 64> Seen;
SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
for (size_t i = 0; i < Ptrs.size(); i++) {
SDValue SD = Builder.getValue(Ptrs[i]);
// Only add non-duplicates
if (Seen.count(SD) == 0) {
NewBases.push_back(Bases[i]);
NewPtrs.push_back(Ptrs[i]);
NewRelocs.push_back(Relocs[i]);
}
Seen.insert(SD);
}
assert(Bases.size() >= NewBases.size());
assert(Ptrs.size() >= NewPtrs.size());
assert(Relocs.size() >= NewRelocs.size());
Bases = NewBases;
Ptrs = NewPtrs;
Relocs = NewRelocs;
assert(Ptrs.size() == Bases.size());
assert(Ptrs.size() == Relocs.size());
}
示例2: assert
/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
/// is not required for correctness. It's purpose is to reduce the size of
/// StackMap section. It has no effect on the number of spill slots required
/// or the actual lowering.
static void
removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
SmallVectorImpl<const Value *> &Ptrs,
SmallVectorImpl<const GCRelocateInst *> &Relocs,
SelectionDAGBuilder &Builder,
FunctionLoweringInfo::StatepointSpillMap &SSM) {
DenseMap<SDValue, const Value *> Seen;
SmallVector<const Value *, 64> NewBases, NewPtrs;
SmallVector<const GCRelocateInst *, 64> NewRelocs;
for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
SDValue SD = Builder.getValue(Ptrs[i]);
auto SeenIt = Seen.find(SD);
if (SeenIt == Seen.end()) {
// Only add non-duplicates
NewBases.push_back(Bases[i]);
NewPtrs.push_back(Ptrs[i]);
NewRelocs.push_back(Relocs[i]);
Seen[SD] = Ptrs[i];
} else {
// Duplicate pointer found, note in SSM and move on:
SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
}
}
assert(Bases.size() >= NewBases.size());
assert(Ptrs.size() >= NewPtrs.size());
assert(Relocs.size() >= NewRelocs.size());
Bases = NewBases;
Ptrs = NewPtrs;
Relocs = NewRelocs;
assert(Ptrs.size() == Bases.size());
assert(Ptrs.size() == Relocs.size());
}
示例3: reservePreviousStackSlotForValue
/// Try to find existing copies of the incoming values in stack slots used for
/// statepoint spilling. If we can find a spill slot for the incoming value,
/// mark that slot as allocated, and reuse the same slot for this safepoint.
/// This helps to avoid series of loads and stores that only serve to reshuffle
/// values on the stack between calls.
static void reservePreviousStackSlotForValue(const Value *IncomingValue,
SelectionDAGBuilder &Builder) {
SDValue Incoming = Builder.getValue(IncomingValue);
if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
// We won't need to spill this, so no need to check for previously
// allocated stack slots
return;
}
SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
if (OldLocation.getNode())
// Duplicates in input
return;
const int LookUpDepth = 6;
Optional<int> Index =
findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
if (!Index.hasValue())
return;
const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
auto SlotIt = find(StatepointSlots, *Index);
assert(SlotIt != StatepointSlots.end() &&
"Value spilled to the unknown stack slot");
// This is one of our dedicated lowering slots
const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
// stack slot already assigned to someone else, can't use it!
// TODO: currently we reserve space for gc arguments after doing
// normal allocation for deopt arguments. We should reserve for
// _all_ deopt and gc arguments, then start allocating. This
// will prevent some moves being inserted when vm state changes,
// but gc state doesn't between two calls.
return;
}
// Reserve this stack slot
Builder.StatepointLowering.reserveStackSlot(Offset);
// Cache this slot so we find it when going through the normal
// assignment loop.
SDValue Loc =
Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
Builder.StatepointLowering.setLocation(Incoming, Loc);
}
示例4: lowerStatepointMetaArgs
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
/// lowering is described in lowerIncomingStatepointValue. This function is
/// responsible for lowering everything in the right position and playing some
/// tricks to avoid redundant stack manipulation where possible. On
/// completion, 'Ops' will contain ready to use operands for machine code
/// statepoint. The chain nodes will have already been created and the DAG root
/// will be set to the last value spilled (if any were).
static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
ImmutableStatepoint StatepointSite,
SelectionDAGBuilder &Builder) {
// Lower the deopt and gc arguments for this statepoint. Layout will
// be: deopt argument length, deopt arguments.., gc arguments...
SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
Builder);
#ifndef NDEBUG
// Check that each of the gc pointer and bases we've gotten out of the
// safepoint is something the strategy thinks might be a pointer into the GC
// heap. This is basically just here to help catch errors during statepoint
// insertion. TODO: This should actually be in the Verifier, but we can't get
// to the GCStrategy from there (yet).
GCStrategy &S = Builder.GFI->getStrategy();
for (const Value *V : Bases) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed base pointer found in statepoint");
}
}
for (const Value *V : Ptrs) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed derived pointer found in statepoint");
}
}
for (const Value *V : Relocations) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() && "non gc managed pointer relocated");
}
}
#endif
// Before we actually start lowering (and allocating spill slots for values),
// reserve any stack slots which we judge to be profitable to reuse for a
// particular value. This is purely an optimization over the code below and
// doesn't change semantics at all. It is important for performance that we
// reserve slots for both deopt and gc values before lowering either.
for (const Value *V : StatepointSite.vm_state_args()) {
reservePreviousStackSlotForValue(V, Builder);
}
for (unsigned i = 0; i < Bases.size(); ++i) {
reservePreviousStackSlotForValue(Bases[i], Builder);
reservePreviousStackSlotForValue(Ptrs[i], Builder);
}
// First, prefix the list with the number of unique values to be
// lowered. Note that this is the number of *Values* not the
// number of SDValues required to lower them.
const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
pushStackMapConstant(Ops, Builder, NumVMSArgs);
assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
StatepointSite.vm_state_end()));
// The vm state arguments are lowered in an opaque manner. We do
// not know what type of values are contained within. We skip the
// first one since that happens to be the total number we lowered
// explicitly just above. We could have left it in the loop and
// not done it explicitly, but it's far easier to understand this
// way.
for (const Value *V : StatepointSite.vm_state_args()) {
SDValue Incoming = Builder.getValue(V);
lowerIncomingStatepointValue(Incoming, Ops, Builder);
}
// Finally, go ahead and lower all the gc arguments. There's no prefixed
// length for this one. After lowering, we'll have the base and pointer
// arrays interwoven with each (lowered) base pointer immediately followed by
// it's (lowered) derived pointer. i.e
// (base[0], ptr[0], base[1], ptr[1], ...)
for (unsigned i = 0; i < Bases.size(); ++i) {
const Value *Base = Bases[i];
lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
const Value *Ptr = Ptrs[i];
lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
}
// If there are any explicit spill slots passed to the statepoint, record
// them, but otherwise do not do anything special. These are user provided
// allocas and give control over placement to the consumer. In this case,
// it is the contents of the slot which may get updated, not the pointer to
// the alloca
for (Value *V : StatepointSite.gc_args()) {
SDValue Incoming = Builder.getValue(V);
//.........这里部分代码省略.........
示例5: lowerStatepointMetaArgs
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
/// lowering is described in lowerIncomingStatepointValue. This function is
/// responsible for lowering everything in the right position and playing some
/// tricks to avoid redundant stack manipulation where possible. On
/// completion, 'Ops' will contain ready to use operands for machine code
/// statepoint. The chain nodes will have already been created and the DAG root
/// will be set to the last value spilled (if any were).
static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
ImmutableStatepoint StatepointSite,
SelectionDAGBuilder &Builder) {
// Lower the deopt and gc arguments for this statepoint. Layout will
// be: deopt argument length, deopt arguments.., gc arguments...
SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
Builder);
#ifndef NDEBUG
// Check that each of the gc pointer and bases we've gotten out of the
// safepoint is something the strategy thinks might be a pointer into the GC
// heap. This is basically just here to help catch errors during statepoint
// insertion. TODO: This should actually be in the Verifier, but we can't get
// to the GCStrategy from there (yet).
GCStrategy &S = Builder.GFI->getStrategy();
for (const Value *V : Bases) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed base pointer found in statepoint");
}
}
for (const Value *V : Ptrs) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed derived pointer found in statepoint");
}
}
for (const Value *V : Relocations) {
auto Opt = S.isGCManagedPointer(V);
if (Opt.hasValue()) {
assert(Opt.getValue() && "non gc managed pointer relocated");
}
}
#endif
// Before we actually start lowering (and allocating spill slots for values),
// reserve any stack slots which we judge to be profitable to reuse for a
// particular value. This is purely an optimization over the code below and
// doesn't change semantics at all. It is important for performance that we
// reserve slots for both deopt and gc values before lowering either.
for (const Value *V : StatepointSite.vm_state_args()) {
SDValue Incoming = Builder.getValue(V);
reservePreviousStackSlotForValue(Incoming, Builder);
}
for (unsigned i = 0; i < Bases.size(); ++i) {
const Value *Base = Bases[i];
reservePreviousStackSlotForValue(Builder.getValue(Base), Builder);
const Value *Ptr = Ptrs[i];
reservePreviousStackSlotForValue(Builder.getValue(Ptr), Builder);
}
// First, prefix the list with the number of unique values to be
// lowered. Note that this is the number of *Values* not the
// number of SDValues required to lower them.
const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
pushStackMapConstant(Ops, Builder, NumVMSArgs);
assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
StatepointSite.vm_state_end()));
// The vm state arguments are lowered in an opaque manner. We do
// not know what type of values are contained within. We skip the
// first one since that happens to be the total number we lowered
// explicitly just above. We could have left it in the loop and
// not done it explicitly, but it's far easier to understand this
// way.
for (const Value *V : StatepointSite.vm_state_args()) {
SDValue Incoming = Builder.getValue(V);
lowerIncomingStatepointValue(Incoming, Ops, Builder);
}
// Finally, go ahead and lower all the gc arguments. There's no prefixed
// length for this one. After lowering, we'll have the base and pointer
// arrays interwoven with each (lowered) base pointer immediately followed by
// it's (lowered) derived pointer. i.e
// (base[0], ptr[0], base[1], ptr[1], ...)
for (unsigned i = 0; i < Bases.size(); ++i) {
const Value *Base = Bases[i];
lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
const Value *Ptr = Ptrs[i];
lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
}
// If there are any explicit spill slots passed to the statepoint, record
// them, but otherwise do not do anything special. These are user provided
// allocas and give control over placement to the consumer. In this case,
//.........这里部分代码省略.........
示例6: is_contained
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
/// lowering is described in lowerIncomingStatepointValue. This function is
/// responsible for lowering everything in the right position and playing some
/// tricks to avoid redundant stack manipulation where possible. On
/// completion, 'Ops' will contain ready to use operands for machine code
/// statepoint. The chain nodes will have already been created and the DAG root
/// will be set to the last value spilled (if any were).
static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder::StatepointLoweringInfo &SI,
SelectionDAGBuilder &Builder) {
// Lower the deopt and gc arguments for this statepoint. Layout will be:
// deopt argument length, deopt arguments.., gc arguments...
#ifndef NDEBUG
if (auto *GFI = Builder.GFI) {
// Check that each of the gc pointer and bases we've gotten out of the
// safepoint is something the strategy thinks might be a pointer (or vector
// of pointers) into the GC heap. This is basically just here to help catch
// errors during statepoint insertion. TODO: This should actually be in the
// Verifier, but we can't get to the GCStrategy from there (yet).
GCStrategy &S = GFI->getStrategy();
for (const Value *V : SI.Bases) {
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed base pointer found in statepoint");
}
}
for (const Value *V : SI.Ptrs) {
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed derived pointer found in statepoint");
}
}
assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
} else {
assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
}
#endif
// Figure out what lowering strategy we're going to use for each part
// Note: Is is conservatively correct to lower both "live-in" and "live-out"
// as "live-through". A "live-through" variable is one which is "live-in",
// "live-out", and live throughout the lifetime of the call (i.e. we can find
// it from any PC within the transitive callee of the statepoint). In
// particular, if the callee spills callee preserved registers we may not
// be able to find a value placed in that register during the call. This is
// fine for live-out, but not for live-through. If we were willing to make
// assumptions about the code generator producing the callee, we could
// potentially allow live-through values in callee saved registers.
const bool LiveInDeopt =
SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
auto isGCValue =[&](const Value *V) {
return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
};
// Before we actually start lowering (and allocating spill slots for values),
// reserve any stack slots which we judge to be profitable to reuse for a
// particular value. This is purely an optimization over the code below and
// doesn't change semantics at all. It is important for performance that we
// reserve slots for both deopt and gc values before lowering either.
for (const Value *V : SI.DeoptState) {
if (!LiveInDeopt || isGCValue(V))
reservePreviousStackSlotForValue(V, Builder);
}
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
reservePreviousStackSlotForValue(SI.Bases[i], Builder);
reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
}
// First, prefix the list with the number of unique values to be
// lowered. Note that this is the number of *Values* not the
// number of SDValues required to lower them.
const int NumVMSArgs = SI.DeoptState.size();
pushStackMapConstant(Ops, Builder, NumVMSArgs);
// The vm state arguments are lowered in an opaque manner. We do not know
// what type of values are contained within.
for (const Value *V : SI.DeoptState) {
SDValue Incoming = Builder.getValue(V);
const bool LiveInValue = LiveInDeopt && !isGCValue(V);
lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder);
}
// Finally, go ahead and lower all the gc arguments. There's no prefixed
// length for this one. After lowering, we'll have the base and pointer
// arrays interwoven with each (lowered) base pointer immediately followed by
// it's (lowered) derived pointer. i.e
// (base[0], ptr[0], base[1], ptr[1], ...)
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
const Value *Base = SI.Bases[i];
lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
Ops, Builder);
const Value *Ptr = SI.Ptrs[i];
lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
Ops, Builder);
//.........这里部分代码省略.........