本文整理汇总了C++中SelectInst::getTrueValue方法的典型用法代码示例。如果您正苦于以下问题:C++ SelectInst::getTrueValue方法的具体用法?C++ SelectInst::getTrueValue怎么用?C++ SelectInst::getTrueValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SelectInst
的用法示例。
在下文中一共展示了SelectInst::getTrueValue方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: visitSelectInst
SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
SizeOffsetType TrueSide = compute(I.getTrueValue());
SizeOffsetType FalseSide = compute(I.getFalseValue());
if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
return TrueSide;
return unknown();
}
示例2: visitSelectInst
SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
SizeOffsetType TrueSide = compute(I.getTrueValue());
SizeOffsetType FalseSide = compute(I.getFalseValue());
if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
if (TrueSide == FalseSide) {
return TrueSide;
}
APInt TrueResult = getSizeWithOverflow(TrueSide);
APInt FalseResult = getSizeWithOverflow(FalseSide);
if (TrueResult == FalseResult) {
return TrueSide;
}
if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
if (TrueResult.slt(FalseResult))
return TrueSide;
return FalseSide;
}
if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
if (TrueResult.sgt(FalseResult))
return TrueSide;
return FalseSide;
}
}
return unknown();
}
示例3: switch
/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
/// returning the kind and providing the out parameter results if we
/// successfully match.
static SelectPatternFlavor
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
SelectInst *SI = dyn_cast<SelectInst>(V);
if (SI == 0) return SPF_UNKNOWN;
ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
if (ICI == 0) return SPF_UNKNOWN;
LHS = ICI->getOperand(0);
RHS = ICI->getOperand(1);
// (icmp X, Y) ? X : Y
if (SI->getTrueValue() == ICI->getOperand(0) &&
SI->getFalseValue() == ICI->getOperand(1)) {
switch (ICI->getPredicate()) {
default: return SPF_UNKNOWN; // Equality.
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return SPF_UMAX;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return SPF_SMAX;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: return SPF_UMIN;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: return SPF_SMIN;
}
}
// (icmp X, Y) ? Y : X
if (SI->getTrueValue() == ICI->getOperand(1) &&
SI->getFalseValue() == ICI->getOperand(0)) {
switch (ICI->getPredicate()) {
default: return SPF_UNKNOWN; // Equality.
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return SPF_UMIN;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return SPF_SMIN;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: return SPF_UMAX;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: return SPF_SMAX;
}
}
// TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
return SPF_UNKNOWN;
}
示例4: processPHI
bool CorrelatedValuePropagation::processPHI(PHINode *P) {
bool Changed = false;
BasicBlock *BB = P->getParent();
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
Value *Incoming = P->getIncomingValue(i);
if (isa<Constant>(Incoming)) continue;
Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB);
// Look if the incoming value is a select with a constant but LVI tells us
// that the incoming value can never be that constant. In that case replace
// the incoming value with the other value of the select. This often allows
// us to remove the select later.
if (!V) {
SelectInst *SI = dyn_cast<SelectInst>(Incoming);
if (!SI) continue;
Constant *C = dyn_cast<Constant>(SI->getFalseValue());
if (!C) continue;
if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
P->getIncomingBlock(i), BB) !=
LazyValueInfo::False)
continue;
DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
V = SI->getTrueValue();
}
P->setIncomingValue(i, V);
Changed = true;
}
if (Value *V = SimplifyInstruction(P)) {
P->replaceAllUsesWith(V);
P->eraseFromParent();
Changed = true;
}
if (Changed)
++NumPhis;
return Changed;
}
示例5: InstDesc
/// Returns true if the select instruction has users in the compare-and-add
/// reduction pattern below. The select instruction argument is the last one
/// in the sequence.
///
/// %sum.1 = phi ...
/// ...
/// %cmp = fcmp pred %0, %CFP
/// %add = fadd %0, %sum.1
/// %sum.2 = select %cmp, %add, %sum.1
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isConditionalRdxPattern(
RecurrenceKind Kind, Instruction *I) {
SelectInst *SI = dyn_cast<SelectInst>(I);
if (!SI)
return InstDesc(false, I);
CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
// Only handle single use cases for now.
if (!CI || !CI->hasOneUse())
return InstDesc(false, I);
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
// Handle only when either of operands of select instruction is a PHI
// node for now.
if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
(!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
return InstDesc(false, I);
Instruction *I1 =
isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
: dyn_cast<Instruction>(TrueVal);
if (!I1 || !I1->isBinaryOp())
return InstDesc(false, I);
Value *Op1, *Op2;
if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
I1->isFast())
return InstDesc(Kind == RK_FloatAdd, SI);
if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
return InstDesc(Kind == RK_FloatMult, SI);
return InstDesc(false, I);
}
示例6: CheckAndInstrument
bool SelectInstrumenter::CheckAndInstrument(Instruction* inst) {
SelectInst* selectInst = dyn_cast<SelectInst>(inst);
if (selectInst != NULL) {
safe_assert(parent_ != NULL);
count_++;
InstrPtrVector instrs;
Constant* iidC = IID_CONSTANT(selectInst);
Constant* inxC = computeIndex(selectInst);
Value* condition = KVALUE_VALUE(selectInst->getCondition(), instrs, NOSIGN);
if(condition == NULL) return false;
Value* tvalue = KVALUE_VALUE(selectInst->getTrueValue(), instrs, NOSIGN);
if(tvalue == NULL) return false;
Value* fvalue = KVALUE_VALUE(selectInst->getFalseValue(), instrs, NOSIGN);
if(fvalue == NULL) return false;
Instruction* call = CALL_IID_KVALUE_KVALUE_KVALUE_INT("llvm_select", iidC, condition, tvalue, fvalue, inxC);
instrs.push_back(call);
// instrument
InsertAllBefore(instrs, selectInst);
return true;
}
return false;
}
示例7: isReturnNonNull
/// Tests whether this function is known to not return null.
///
/// Requires that the function returns a pointer.
///
/// Returns true if it believes the function will not return a null, and sets
/// \p Speculative based on whether the returned conclusion is a speculative
/// conclusion due to SCC calls.
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
bool &Speculative) {
assert(F->getReturnType()->isPointerTy() &&
"nonnull only meaningful on pointer types");
Speculative = false;
SmallSetVector<Value *, 8> FlowsToReturn;
for (BasicBlock &BB : *F)
if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
Value *RetVal = FlowsToReturn[i];
// If this value is locally known to be non-null, we're good
if (isKnownNonNull(RetVal))
continue;
// Otherwise, we need to look upwards since we can't make any local
// conclusions.
Instruction *RVI = dyn_cast<Instruction>(RetVal);
if (!RVI)
return false;
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::AddrSpaceCast:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
continue;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
FlowsToReturn.insert(PN->getIncomingValue(i));
continue;
}
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS(RVI);
Function *Callee = CS.getCalledFunction();
// A call to a node within the SCC is assumed to return null until
// proven otherwise
if (Callee && SCCNodes.count(Callee)) {
Speculative = true;
continue;
}
return false;
}
default:
return false; // Unknown source, may be null
};
llvm_unreachable("should have either continued or returned");
}
return true;
}
示例8: isFunctionMallocLike
/// Tests whether a function is "malloc-like".
///
/// A function is "malloc-like" if it returns either null or a pointer that
/// doesn't alias any other pointer visible to the caller.
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
SmallSetVector<Value *, 8> FlowsToReturn;
for (BasicBlock &BB : *F)
if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
Value *RetVal = FlowsToReturn[i];
if (Constant *C = dyn_cast<Constant>(RetVal)) {
if (!C->isNullValue() && !isa<UndefValue>(C))
return false;
continue;
}
if (isa<Argument>(RetVal))
return false;
if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::AddrSpaceCast:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
continue;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (Value *IncValue : PN->incoming_values())
FlowsToReturn.insert(IncValue);
continue;
}
// Check whether the pointer came from an allocation.
case Instruction::Alloca:
break;
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS(RVI);
if (CS.hasRetAttr(Attribute::NoAlias))
break;
if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
break;
LLVM_FALLTHROUGH;
}
default:
return false; // Did not come from an allocation.
}
if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
return false;
}
return true;
}
示例9: processPHI
bool CorrelatedValuePropagation::processPHI(PHINode *P) {
bool Changed = false;
BasicBlock *BB = P->getParent();
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
Value *Incoming = P->getIncomingValue(i);
if (isa<Constant>(Incoming)) continue;
Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
// Look if the incoming value is a select with a scalar condition for which
// LVI can tells us the value. In that case replace the incoming value with
// the appropriate value of the select. This often allows us to remove the
// select later.
if (!V) {
SelectInst *SI = dyn_cast<SelectInst>(Incoming);
if (!SI) continue;
Value *Condition = SI->getCondition();
if (!Condition->getType()->isVectorTy()) {
if (Constant *C = LVI->getConstantOnEdge(
Condition, P->getIncomingBlock(i), BB, P)) {
if (C->isOneValue()) {
V = SI->getTrueValue();
} else if (C->isZeroValue()) {
V = SI->getFalseValue();
}
// Once LVI learns to handle vector types, we could also add support
// for vector type constants that are not all zeroes or all ones.
}
}
// Look if the select has a constant but LVI tells us that the incoming
// value can never be that constant. In that case replace the incoming
// value with the other value of the select. This often allows us to
// remove the select later.
if (!V) {
Constant *C = dyn_cast<Constant>(SI->getFalseValue());
if (!C) continue;
if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
P->getIncomingBlock(i), BB, P) !=
LazyValueInfo::False)
continue;
V = SI->getTrueValue();
}
DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
}
P->setIncomingValue(i, V);
Changed = true;
}
// FIXME: Provide TLI, DT, AT to SimplifyInstruction.
const DataLayout &DL = BB->getModule()->getDataLayout();
if (Value *V = SimplifyInstruction(P, DL)) {
P->replaceAllUsesWith(V);
P->eraseFromParent();
Changed = true;
}
if (Changed)
++NumPhis;
return Changed;
}
示例10: ReplaceInstUsesWith
//.........这里部分代码省略.........
if (W == Y) {
Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
return BinaryOperator::CreateMul(W, NewAdd);
}
}
}
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
Value *X = 0;
if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
return BinaryOperator::CreateSub(SubOne(CRHS), X);
// (X & FF00) + xx00 -> (X+xx00) & FF00
if (LHS->hasOneUse() &&
match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
// See if all bits from the first bit set in the Add RHS up are included
// in the mask. First, get the rightmost bit.
const APInt &AddRHSV = CRHS->getValue();
// Form a mask of all bits from the lowest bit added through the top.
APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
// See if the and mask includes all of these bits.
APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
if (AddRHSHighBits == AddRHSHighBitsAnd) {
// Okay, the xform is safe. Insert the new add pronto.
Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
return BinaryOperator::CreateAnd(NewAdd, C2);
}
}
// Try to fold constant add into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
}
// add (select X 0 (sub n A)) A --> select X A n
{
SelectInst *SI = dyn_cast<SelectInst>(LHS);
Value *A = RHS;
if (!SI) {
SI = dyn_cast<SelectInst>(RHS);
A = LHS;
}
if (SI && SI->hasOneUse()) {
Value *TV = SI->getTrueValue();
Value *FV = SI->getFalseValue();
Value *N;
// Can we fold the add into the argument of the select?
// We check both true and false select arguments for a matching subtract.
if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
}
}
// Check for (add (sext x), y), see if we can merge this into an
// integer add followed by a sext.
if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
// (add (sext x), cst) --> (sext (add x, cst'))
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
Constant *CI =
ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
if (LHSConv->hasOneUse() &&
ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
// Insert the new, smaller add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
CI, "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
// (add (sext x), (sext y)) --> (sext (add int x, y))
if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
// Only do this if x/y have the same type, if at last one of them has a
// single use (so we don't increase the number of sexts), and if the
// integer add will not overflow.
if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
(LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
WillNotOverflowSignedAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0))) {
// Insert the new integer add.
Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
RHSConv->getOperand(0), "addconv");
return new SExtInst(NewAdd, I.getType());
}
}
}
return Changed ? &I : 0;
}
示例11: IsFunctionMallocLike
/// IsFunctionMallocLike - A function is malloc-like if it returns either null
/// or a pointer that doesn't alias any other pointer visible to the caller.
bool FunctionAttrs::IsFunctionMallocLike(Function *F,
SmallPtrSet<Function*, 8> &SCCNodes) const {
UniqueVector<Value *> FlowsToReturn;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
FlowsToReturn.insert(Ret->getReturnValue());
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
Value *RetVal = FlowsToReturn[i+1]; // UniqueVector[0] is reserved.
if (Constant *C = dyn_cast<Constant>(RetVal)) {
if (!C->isNullValue() && !isa<UndefValue>(C))
return false;
continue;
}
if (isa<Argument>(RetVal))
return false;
if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
switch (RVI->getOpcode()) {
// Extend the analysis by looking upwards.
case Instruction::BitCast:
case Instruction::GetElementPtr:
FlowsToReturn.insert(RVI->getOperand(0));
continue;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(RVI);
FlowsToReturn.insert(SI->getTrueValue());
FlowsToReturn.insert(SI->getFalseValue());
continue;
}
case Instruction::PHI: {
PHINode *PN = cast<PHINode>(RVI);
for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
FlowsToReturn.insert(PN->getIncomingValue(i));
continue;
}
// Check whether the pointer came from an allocation.
case Instruction::Alloca:
break;
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS(RVI);
if (CS.paramHasNoAliasAttr(0))
break;
if (CS.getCalledFunction() &&
SCCNodes.count(CS.getCalledFunction()))
break;
} // fall-through
default:
return false; // Did not come from an allocation.
}
if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
return false;
}
return true;
}
示例12: ReplaceInstUsesWith
/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
/// SPF2(SPF1(A, B), C)
Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
SelectPatternFlavor SPF1,
Value *A, Value *B,
Instruction &Outer,
SelectPatternFlavor SPF2, Value *C) {
if (C == A || C == B) {
// MAX(MAX(A, B), B) -> MAX(A, B)
// MIN(MIN(a, b), a) -> MIN(a, b)
if (SPF1 == SPF2)
return ReplaceInstUsesWith(Outer, Inner);
// MAX(MIN(a, b), a) -> a
// MIN(MAX(a, b), a) -> a
if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
(SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
(SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
(SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
return ReplaceInstUsesWith(Outer, C);
}
if (SPF1 == SPF2) {
if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
APInt ACB = CB->getValue();
APInt ACC = CC->getValue();
// MIN(MIN(A, 23), 97) -> MIN(A, 23)
// MAX(MAX(A, 97), 23) -> MAX(A, 97)
if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
(SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
(SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
(SPF1 == SPF_SMAX && ACB.sge(ACC)))
return ReplaceInstUsesWith(Outer, Inner);
// MIN(MIN(A, 97), 23) -> MIN(A, 23)
// MAX(MAX(A, 23), 97) -> MAX(A, 97)
if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
(SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
(SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
(SPF1 == SPF_SMAX && ACB.slt(ACC))) {
Outer.replaceUsesOfWith(Inner, A);
return &Outer;
}
}
}
}
// ABS(ABS(X)) -> ABS(X)
// NABS(NABS(X)) -> NABS(X)
if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
return ReplaceInstUsesWith(Outer, Inner);
}
// ABS(NABS(X)) -> ABS(X)
// NABS(ABS(X)) -> NABS(X)
if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
(SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
SelectInst *SI = cast<SelectInst>(Inner);
Value *NewSI = Builder->CreateSelect(
SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
return ReplaceInstUsesWith(Outer, NewSI);
}
return nullptr;
}
示例13: switch
/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
/// returning the kind and providing the out parameter results if we
/// successfully match.
static SelectPatternFlavor
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
SelectInst *SI = dyn_cast<SelectInst>(V);
if (!SI) return SPF_UNKNOWN;
ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
if (!ICI) return SPF_UNKNOWN;
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *CmpLHS = ICI->getOperand(0);
Value *CmpRHS = ICI->getOperand(1);
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
LHS = CmpLHS;
RHS = CmpRHS;
// (icmp X, Y) ? X : Y
if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
switch (Pred) {
default: return SPF_UNKNOWN; // Equality.
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return SPF_UMAX;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return SPF_SMAX;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: return SPF_UMIN;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: return SPF_SMIN;
}
}
// (icmp X, Y) ? Y : X
if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
switch (Pred) {
default: return SPF_UNKNOWN; // Equality.
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return SPF_UMIN;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return SPF_SMIN;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: return SPF_UMAX;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: return SPF_SMAX;
}
}
if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
(CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
// ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
// NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS;
}
// ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
// NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS;
}
}
}
// TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
return SPF_UNKNOWN;
}
示例14: CanEvaluateShifted
//.........这里部分代码省略.........
// TODO: Handle opposite shift by exact value.
ConstantInt *CI = nullptr;
if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
(!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
if (CI->getZExtValue() == NumBits) {
// TODO: Check that the input bits are already zero with MaskedValueIsZero
#if 0
// If this is a truncate of a logical shr, we can truncate it to a smaller
// lshr iff we know that the bits we would otherwise be shifting in are
// already zeros.
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (MaskedValueIsZero(I->getOperand(0),
APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
CI->getLimitedValue(BitWidth) < BitWidth) {
return CanEvaluateTruncated(I->getOperand(0), Ty);
}
#endif
}
}
// We can't mutate something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
switch (I->getOpcode()) {
default: return false;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
case Instruction::Shl: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
if (!CI) return false;
// We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
if (isLeftShift) return true;
// We can always turn shl(c)+shr(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
// profitable unless we know the and'd out bits are already zero.
if (CI->getZExtValue() > NumBits) {
unsigned LowBits = TypeWidth - CI->getZExtValue();
if (MaskedValueIsZero(I->getOperand(0),
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
return false;
}
case Instruction::LShr: {
// We can often fold the shift into shifts-by-a-constant.
CI = dyn_cast<ConstantInt>(I->getOperand(1));
if (!CI) return false;
// We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
if (!isLeftShift) return true;
// We can always turn lshr(c)+shl(c) -> and(c2).
if (CI->getValue() == NumBits) return true;
unsigned TypeWidth = I->getType()->getScalarSizeInBits();
// We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
// profitable unless we know the and'd out bits are already zero.
if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
unsigned LowBits = CI->getZExtValue() - NumBits;
if (MaskedValueIsZero(I->getOperand(0),
APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
return false;
}
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
}
case Instruction::PHI: {
// We can change a phi if we can change all operands. Note that we never
// get into trouble with cyclic PHIs here because we only consider
// instructions with a single use.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
return false;
return true;
}
}
}