当前位置: 首页>>代码示例>>C++>>正文


C++ Segment3::ComputeEndPoints方法代码示例

本文整理汇总了C++中Segment3::ComputeEndPoints方法的典型用法代码示例。如果您正苦于以下问题:C++ Segment3::ComputeEndPoints方法的具体用法?C++ Segment3::ComputeEndPoints怎么用?C++ Segment3::ComputeEndPoints使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Segment3的用法示例。


在下文中一共展示了Segment3::ComputeEndPoints方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: querySR

Real DistTriangle3Rectangle3<Real>::GetSquared ()
{
    // Compare edges of triangle to the interior of rectangle.
    Real sqrDist = Math<Real>::MAX_REAL, sqrDistTmp;
    Segment3<Real> edge;
    int i0, i1;
    for (i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
    {
        edge.Center = ((Real)0.5)*(mTriangle->V[i0] +
            mTriangle->V[i1]);
        edge.Direction = mTriangle->V[i1] - mTriangle->V[i0];
        edge.Extent = ((Real)0.5)*edge.Direction.Normalize();
        edge.ComputeEndPoints();

        DistSegment3Rectangle3<Real> querySR(edge, *mRectangle);
        sqrDistTmp = querySR.GetSquared();
        if (sqrDistTmp < sqrDist)
        {
            // The triangle point is reported in mClosestPoint0 and the
            // rectangle point is reported in mClosestPoint1.  The querySR
            // calculator is for triangleEdge-rectangle, so GetClosestPoint0()
            // and GetClosestPoint1() must be called as listed next.
            mClosestPoint0 = querySR.GetClosestPoint0();
            mClosestPoint1 = querySR.GetClosestPoint1();
            sqrDist = sqrDistTmp;
        }
    }

    // Compare edges of rectangle to the interior of triangle.
    for (i1 = 0; i1 < 2; ++i1)
    {
        for (i0 = -1; i0 <= 1; i0 += 2)
        {
            edge.Center = mRectangle->Center +
                (i0*mRectangle->Extent[1-i1]) *
                mRectangle->Axis[1-i1];
            edge.Direction = mRectangle->Axis[i1];
            edge.Extent = mRectangle->Extent[i1];
            edge.ComputeEndPoints();

            DistSegment3Triangle3<Real> queryST(edge, *mTriangle);
            sqrDistTmp = queryST.GetSquared();
            if (sqrDistTmp < sqrDist)
            {
                // The triangle point is reported in mClosestPoint0 and the
                // rectangle point is reported in mClosestPoint1.  The queryST
                // calculator is for rectangleEdge-triangle, so
                // GetClosestPoint1() and GetClosestPoint0() must be called as
                // listed next.
                mClosestPoint0 = queryST.GetClosestPoint1();
                mClosestPoint1 = queryST.GetClosestPoint0();
                sqrDist = sqrDistTmp;
            }
        }
    }

    return sqrDist;
}
开发者ID:2asoft,项目名称:GeometricTools,代码行数:58,代码来源:Wm5DistTriangle3Rectangle3.cpp

示例2: querySR

Real DistRectangle3Rectangle3<Real>::GetSquared ()
{
    // Compare edges of rectangle0 to the interior of rectangle1.
    Real sqrDist = Math<Real>::MAX_REAL, sqrDistTmp;
    Segment3<Real> edge;
    int i0, i1;
    for (i1 = 0; i1 < 2; ++i1)
    {
        for (i0 = -1; i0 <= 1; i0 += 2)
        {
            edge.Center = mRectangle0->Center +
                (i0*mRectangle0->Extent[1-i1]) *
                mRectangle0->Axis[1-i1];
            edge.Direction = mRectangle0->Axis[i1];
            edge.Extent = mRectangle0->Extent[i1];
            edge.ComputeEndPoints();

            DistSegment3Rectangle3<Real> querySR(edge, *mRectangle1);
            sqrDistTmp = querySR.GetSquared();
            if (sqrDistTmp < sqrDist)
            {
                mClosestPoint0 = querySR.GetClosestPoint0();
                mClosestPoint1 = querySR.GetClosestPoint1();
                sqrDist = sqrDistTmp;
            }
        }
    }

    // Compare edges of rectangle1 to the interior of rectangle0.
    for (i1 = 0; i1 < 2; ++i1)
    {
        for (i0 = -1; i0 <= 1; i0 += 2)
        {
            edge.Center = mRectangle1->Center +
                (i0*mRectangle1->Extent[1-i1]) *
                mRectangle1->Axis[1-i1];
            edge.Direction = mRectangle1->Axis[i1];
            edge.Extent = mRectangle1->Extent[i1];
            edge.ComputeEndPoints();

            DistSegment3Rectangle3<Real> querySR(edge, *mRectangle0);
            sqrDistTmp = querySR.GetSquared();
            if (sqrDistTmp < sqrDist)
            {
                mClosestPoint0 = querySR.GetClosestPoint0();
                mClosestPoint1 = querySR.GetClosestPoint1();
                sqrDist = sqrDistTmp;
            }
        }
    }

    return sqrDist;
}
开发者ID:JackTing,项目名称:SkpColl,代码行数:53,代码来源:Wm5DistRectangle3Rectangle3.cpp

示例3: queryST

Real DistTriangle3Triangle3<Real>::GetSquared ()
{
	// Compare edges of triangle0 to the interior of triangle1.
	Real sqrDist = Math<Real>::MAX_REAL, sqrDistTmp;
	Segment3<Real> edge;
	Real ratio;
	int i0, i1;
	for (i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
	{
		edge.Center = ((Real)0.5)*(mTriangle0->V[i0] +
		                           mTriangle0->V[i1]);
		edge.Direction = mTriangle0->V[i1] - mTriangle0->V[i0];
		edge.Extent = ((Real)0.5)*edge.Direction.Normalize();
		edge.ComputeEndPoints();

		DistSegment3Triangle3<Real> queryST(edge, *mTriangle1);
		sqrDistTmp = queryST.GetSquared();
		if (sqrDistTmp < sqrDist)
		{
			mClosestPoint0 = queryST.GetClosestPoint0();
			mClosestPoint1 = queryST.GetClosestPoint1();
			sqrDist = sqrDistTmp;

			ratio = queryST.GetSegmentParameter()/edge.Extent;
			mTriangleBary0[i0] = ((Real)0.5)*((Real)1 - ratio);
			mTriangleBary0[i1] = (Real)1 - mTriangleBary0[i0];
			mTriangleBary0[3-i0-i1] = (Real)0;
			mTriangleBary1[0] = queryST.GetTriangleBary(0);
			mTriangleBary1[1] = queryST.GetTriangleBary(1);
			mTriangleBary1[2] = queryST.GetTriangleBary(2);

			if (sqrDist <= Math<Real>::ZERO_TOLERANCE)
			{
				return (Real)0;
			}
		}
	}

	// Compare edges of triangle1 to the interior of triangle0.
	for (i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
	{
		edge.Center = ((Real)0.5)*(mTriangle1->V[i0] +
		                           mTriangle1->V[i1]);
		edge.Direction = mTriangle1->V[i1] - mTriangle1->V[i0];
		edge.Extent = ((Real)0.5)*edge.Direction.Normalize();
		edge.ComputeEndPoints();

		DistSegment3Triangle3<Real> queryST(edge, *mTriangle0);
		sqrDistTmp = queryST.GetSquared();
		if (sqrDistTmp < sqrDist)
		{
			mClosestPoint0 = queryST.GetClosestPoint0();
			mClosestPoint1 = queryST.GetClosestPoint1();
			sqrDist = sqrDistTmp;

			ratio = queryST.GetSegmentParameter()/edge.Extent;
			mTriangleBary1[i0] = ((Real)0.5)*((Real)1 - ratio);
			mTriangleBary1[i1] = (Real)1 - mTriangleBary1[i0];
			mTriangleBary1[3-i0-i1] = (Real)0;
			mTriangleBary0[0] = queryST.GetTriangleBary(0);
			mTriangleBary0[1] = queryST.GetTriangleBary(1);
			mTriangleBary0[2] = queryST.GetTriangleBary(2);

			if (sqrDist <= Math<Real>::ZERO_TOLERANCE)
			{
				return (Real)0;
			}
		}
	}

	return sqrDist;
}
开发者ID:bhlzlx,项目名称:WildMagic,代码行数:72,代码来源:Wm5DistTriangle3Triangle3.cpp

示例4: return

Real DistLine3Rectangle3<Real>::GetSquared ()
{
    // Test if line intersects rectangle.  If so, the squared distance is
    // zero.
    Vector3<Real> N = mRectangle->Axis[0].Cross( mRectangle->Axis[1] );
    Real NdD = N.Dot( mLine->Direction );
    if ( Math<Real>::FAbs( NdD ) > Math<Real>::ZERO_TOLERANCE )
    {
        // The line and rectangle are not parallel, so the line intersects
        // the plane of the rectangle.
        Vector3<Real> diff = mLine->Origin - mRectangle->Center;
        Vector3<Real> U, V;
        Vector3<Real>::GenerateComplementBasis( U, V, mLine->Direction );
        Real UdD0 = U.Dot( mRectangle->Axis[0] );
        Real UdD1 = U.Dot( mRectangle->Axis[1] );
        Real UdPmC = U.Dot( diff );
        Real VdD0 = V.Dot( mRectangle->Axis[0] );
        Real VdD1 = V.Dot( mRectangle->Axis[1] );
        Real VdPmC = V.Dot( diff );
        Real invDet = ( ( Real )1 ) / ( UdD0 * VdD1 - UdD1 * VdD0 );

        // Rectangle coordinates for the point of intersection.
        Real s0 = ( VdD1 * UdPmC - UdD1 * VdPmC ) * invDet;
        Real s1 = ( UdD0 * VdPmC - VdD0 * UdPmC ) * invDet;

        if ( Math<Real>::FAbs( s0 ) <= mRectangle->Extent[0]
                &&  Math<Real>::FAbs( s1 ) <= mRectangle->Extent[1] )
        {
            // Line parameter for the point of intersection.
            Real DdD0 = mLine->Direction.Dot( mRectangle->Axis[0] );
            Real DdD1 = mLine->Direction.Dot( mRectangle->Axis[1] );
            Real DdDiff = mLine->Direction.Dot( diff );
            mLineParameter = s0 * DdD0 + s1 * DdD1 - DdDiff;

            // Rectangle coordinates for the point of intersection.
            mRectCoord[0] = s0;
            mRectCoord[1] = s1;

            // The intersection point is inside or on the rectangle.
            mClosestPoint0 = mLine->Origin +
                             mLineParameter * mLine->Direction;

            mClosestPoint1 = mRectangle->Center +
                             s0 * mRectangle->Axis[0] + s1 * mRectangle->Axis[1];

            return ( Real )0;
        }
    }

    // Either (1) the line is not parallel to the rectangle and the point of
    // intersection of the line and the plane of the rectangle is outside the
    // rectangle or (2) the line and rectangle are parallel.  Regardless, the
    // closest point on the rectangle is on an edge of the rectangle.  Compare
    // the line to all four edges of the rectangle.
    Real sqrDist = Math<Real>::MAX_REAL;
    Vector3<Real> scaledDir[2] =
    {
        mRectangle->Extent[0]* mRectangle->Axis[0],
        mRectangle->Extent[1]* mRectangle->Axis[1]
    };
    for ( int i1 = 0; i1 < 2; ++i1 )
    {
        for ( int i0 = 0; i0 < 2; ++i0 )
        {
            Segment3<Real> segment;
            segment.Center = mRectangle->Center +
                             ( ( Real )( 2 * i0 - 1 ) ) * scaledDir[i1];
            segment.Direction = mRectangle->Axis[1 - i1];
            segment.Extent = mRectangle->Extent[1 - i1];
            segment.ComputeEndPoints();

            DistLine3Segment3<Real> queryLS( *mLine, segment );
            Real sqrDistTmp = queryLS.GetSquared();
            if ( sqrDistTmp < sqrDist )
            {
                mClosestPoint0 = queryLS.GetClosestPoint0();
                mClosestPoint1 = queryLS.GetClosestPoint1();
                sqrDist = sqrDistTmp;

                mLineParameter = queryLS.GetLineParameter();
                Real ratio = queryLS.GetSegmentParameter() / segment.Extent;
                mRectCoord[0] = mRectangle->Extent[0] * ( ( 1 - i1 ) * ( 2 * i0 - 1 ) +
                                i1 * ratio );
                mRectCoord[1] = mRectangle->Extent[1] * ( ( 1 - i0 ) * ( 2 * i1 - 1 ) +
                                i0 * ratio );
            }
        }
    }

    return sqrDist;
}
开发者ID:kanbang,项目名称:myexercise,代码行数:91,代码来源:Wm5DistLine3Rectangle3.cpp

示例5: return

Real DistLine3Triangle3<Real>::GetSquared ()
{
    // Test if line intersects triangle.  If so, the squared distance is zero.
    Vector3<Real> edge0 = mTriangle->V[1] - mTriangle->V[0];
    Vector3<Real> edge1 = mTriangle->V[2] - mTriangle->V[0];
    Vector3<Real> normal = edge0.UnitCross(edge1);
    Real NdD = normal.Dot(mLine->Direction);
    if (Math<Real>::FAbs(NdD) > Math<Real>::ZERO_TOLERANCE)
    {
        // The line and triangle are not parallel, so the line intersects
        // the plane of the triangle.
        Vector3<Real> diff = mLine->Origin - mTriangle->V[0];
        Vector3<Real> U, V;
        Vector3<Real>::GenerateComplementBasis(U, V, mLine->Direction);
        Real UdE0 = U.Dot(edge0);
        Real UdE1 = U.Dot(edge1);
        Real UdDiff = U.Dot(diff);
        Real VdE0 = V.Dot(edge0);
        Real VdE1 = V.Dot(edge1);
        Real VdDiff = V.Dot(diff);
        Real invDet = ((Real)1)/(UdE0*VdE1 - UdE1*VdE0);

        // Barycentric coordinates for the point of intersection.
        Real b1 = (VdE1*UdDiff - UdE1*VdDiff)*invDet;
        Real b2 = (UdE0*VdDiff - VdE0*UdDiff)*invDet;
        Real b0 = (Real)1 - b1 - b2;

        if (b0 >= (Real)0 && b1 >= (Real)0 && b2 >= (Real)0)
        {
            // Line parameter for the point of intersection.
            Real DdE0 = mLine->Direction.Dot(edge0);
            Real DdE1 = mLine->Direction.Dot(edge1);
            Real DdDiff = mLine->Direction.Dot(diff);
            mLineParameter = b1*DdE0 + b2*DdE1 - DdDiff;

            // Barycentric coordinates for the point of intersection.
            mTriangleBary[0] = b0;
            mTriangleBary[1] = b1;
            mTriangleBary[2] = b2;

            // The intersection point is inside or on the triangle.
            mClosestPoint0 = mLine->Origin +
                mLineParameter*mLine->Direction;

            mClosestPoint1 = mTriangle->V[0] + b1*edge0 + b2*edge1;

            return (Real)0;
        }
    }

    // Either (1) the line is not parallel to the triangle and the point of
    // intersection of the line and the plane of the triangle is outside the
    // triangle or (2) the line and triangle are parallel.  Regardless, the
    // closest point on the triangle is on an edge of the triangle.  Compare
    // the line to all three edges of the triangle.
    Real sqrDist = Math<Real>::MAX_REAL;
    for (int i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
    {
        Segment3<Real> segment;
        segment.Center = ((Real)0.5)*(mTriangle->V[i0] +
            mTriangle->V[i1]);
        segment.Direction = mTriangle->V[i1] - mTriangle->V[i0];
        segment.Extent = ((Real)0.5)*segment.Direction.Normalize();
        segment.ComputeEndPoints();

        DistLine3Segment3<Real> queryLS(*mLine, segment);
        Real sqrDistTmp = queryLS.GetSquared();
        if (sqrDistTmp < sqrDist)
        {
            mClosestPoint0 = queryLS.GetClosestPoint0();
            mClosestPoint1 = queryLS.GetClosestPoint1();
            sqrDist = sqrDistTmp;

            mLineParameter = queryLS.GetLineParameter();
            Real ratio = queryLS.GetSegmentParameter()/segment.Extent;
            mTriangleBary[i0] = ((Real)0.5)*((Real)1 - ratio);
            mTriangleBary[i1] = (Real)1 - mTriangleBary[i0];
            mTriangleBary[3-i0-i1] = (Real)0;
        }
    }

    return sqrDist;
}
开发者ID:shawnwu1991,项目名称:FEMSimulator,代码行数:83,代码来源:Wm5DistLine3Triangle3.cpp


注:本文中的Segment3::ComputeEndPoints方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。