本文整理汇总了C++中SearchPoint::GetLocation方法的典型用法代码示例。如果您正苦于以下问题:C++ SearchPoint::GetLocation方法的具体用法?C++ SearchPoint::GetLocation怎么用?C++ SearchPoint::GetLocation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SearchPoint
的用法示例。
在下文中一共展示了SearchPoint::GetLocation方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
gcc_pure
static bool
IsInRange(const SearchPoint &a, const SearchPoint &b,
unsigned half_max_range_sq, double max_distance)
{
/* optimisation: if the flat distance is much smaller than the
maximum range, we don't need to call the method
GeoPoint::Distance() which is very expensive */
return a.GetFlatLocation().DistanceSquared(b.GetFlatLocation()) <= half_max_range_sq ||
a.GetLocation().DistanceS(b.GetLocation()) <= max_distance;
}
示例2: CalcDistance
/**
* Distance function for free point
*
* @param curNode Destination node
* @param currentLocation Origin location
*
* @return Distance (flat) from origin to destination
*/
gcc_pure
unsigned CalcDistance(const ScanTaskPoint curNode,
const SearchPoint ¤tLocation) const {
/* using expensive floating point formulas here to avoid integer
rounding errors */
const GeoPoint &a = GetPoint(curNode).GetLocation();
const GeoPoint &b = currentLocation.GetLocation();
return (unsigned)a.Distance(b);
}
示例3: GetX
bool
OLCTriangle::FindClosingPairs(unsigned old_size)
{
if (predict) {
return closing_pairs.Insert(ClosingPair(0, n_points-1));
}
struct TracePointNode {
const TracePoint *point;
unsigned index;
};
struct TracePointNodeAccessor {
gcc_pure
int GetX(const TracePointNode &node) const {
return node.point->GetFlatLocation().x;
}
gcc_pure
int GetY(const TracePointNode &node) const {
return node.point->GetFlatLocation().y;
}
};
QuadTree<TracePointNode, TracePointNodeAccessor> search_point_tree;
for (unsigned i = old_size; i < n_points; ++i) {
TracePointNode node;
node.point = &GetPoint(i);
node.index = i;
search_point_tree.insert(node);
}
search_point_tree.Optimise();
bool new_pair = false;
for (unsigned i = old_size; i < n_points; ++i) {
TracePointNode point;
point.point = &GetPoint(i);
point.index = i;
const SearchPoint start = *point.point;
const unsigned max_range = trace_master.ProjectRange(start.GetLocation(), max_distance);
const unsigned half_max_range_sq = max_range * max_range / 2;
const int min_altitude = GetMinimumFinishAltitude(*point.point);
const int max_altitude = GetMaximumStartAltitude(*point.point);
unsigned last = 0, first = i;
const auto visitor = [this, i, start,
half_max_range_sq,
min_altitude, max_altitude,
&first, &last]
(const TracePointNode &node) {
const auto &dest = *node.point;
if (node.index + 2 < i &&
dest.GetIntegerAltitude() <= max_altitude &&
IsInRange(start, dest, half_max_range_sq, max_distance)) {
// point i is last point
first = std::min(node.index, first);
last = i;
} else if (node.index > i + 2 &&
dest.GetIntegerAltitude() >= min_altitude &&
IsInRange(start, dest, half_max_range_sq, max_distance)) {
// point i is first point
first = i;
last = std::max(node.index, last);
}
};
search_point_tree.VisitWithinRange(point, max_range, visitor);
if (last != 0 && closing_pairs.Insert(ClosingPair(first, last)))
new_pair = true;
}
return new_pair;
}
示例4:
/**
* Accessor to retrieve location of the sample/boundary polygon
* node that produces the minimum task distance.
*
* @return Location of minimum distance node
*/
const GeoPoint &GetLocationMin() const {
return search_min.GetLocation();
};
示例5: Result
TriangleSecondLeg::Result
TriangleSecondLeg::Calculate(const SearchPoint &c, unsigned best) const
{
// this is a heuristic to remove invalid triangles
// we do as much of this in flat projection for speed
const unsigned df_2 = b.FlatDistanceTo(c);
const unsigned df_3 = c.FlatDistanceTo(a);
const unsigned df_total = df_1+df_2+df_3;
// require some distance!
if (df_total<20) {
return Result(0, 0);
}
// no point scanning if worst than best
if (df_total<= best) {
return Result(0, 0);
}
const unsigned shortest = std::min({df_1, df_2, df_3});
// require all legs to have distance
if (!shortest)
return Result(0, 0);
if (is_fai && (shortest*4<df_total))
// fails min < 25% worst-case rule!
return Result(0, 0);
const unsigned d = df_3 + df_2;
// without FAI rules, allow any triangle
if (!is_fai)
return Result(d, df_total);
if (shortest * 25 >= df_total * 7)
// passes min > 28% rule,
// this automatically means we pass max > 45% worst-case
return Result(d, df_total);
const unsigned longest = std::max({df_1, df_2, df_3});
if (longest * 20 > df_total * 9) // fails max > 45% worst-case rule!
return Result(0, 0);
// passed basic tests, now detailed ones
// find accurate min leg distance
fixed leg(0);
if (df_1 == shortest)
leg = a.GetLocation().Distance(b.GetLocation());
else if (df_2 == shortest)
leg = b.GetLocation().Distance(c.GetLocation());
else if (df_3 == shortest)
leg = c.GetLocation().Distance(a.GetLocation());
// estimate total distance by scaling.
// this is a slight approximation, but saves having to do
// three accurate distance calculations.
const fixed d_total(df_total* leg / shortest);
if (d_total >= fixed(500000)) {
// long distance, ok that it failed 28% rule
return Result(d, df_total);
}
return Result(0, 0);
}