本文整理汇总了C++中Scalar::standard_deviation方法的典型用法代码示例。如果您正苦于以下问题:C++ Scalar::standard_deviation方法的具体用法?C++ Scalar::standard_deviation怎么用?C++ Scalar::standard_deviation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Scalar
的用法示例。
在下文中一共展示了Scalar::standard_deviation方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: run
//.........这里部分代码省略.........
// const Array< Array<double> >& quad_values = quad->getBasisAtQuadPoints();
// Print output headers
const std::vector< size_t > widths =
print_headers( std::cout , cmd , comm_rank );
using Kokkos::Example::FENL::TrivialManufacturedSolution;
using Kokkos::Example::FENL::ElementComputationKLCoefficient;
using Kokkos::Example::BoxElemPart;
using Kokkos::Example::FENL::fenl;
using Kokkos::Example::FENL::Perf;
const double bc_lower_value = 1 ;
const double bc_upper_value = 2 ;
const TrivialManufacturedSolution manufactured_solution;
int nelem[3] = { cmd.CMD_USE_FIXTURE_X ,
cmd.CMD_USE_FIXTURE_Y ,
cmd.CMD_USE_FIXTURE_Z };
// Create KL diffusion coefficient
const double kl_mean = cmd.CMD_USE_MEAN;
const double kl_variance = cmd.CMD_USE_VAR;
const double kl_correlation = cmd.CMD_USE_COR;
typedef ElementComputationKLCoefficient< Scalar, double, Device > KL;
KL diffusion_coefficient( kl_mean, kl_variance, kl_correlation, dim );
typedef typename KL::RandomVariableView RV;
typedef typename RV::HostMirror HRV;
RV rv = diffusion_coefficient.getRandomVariables();
HRV hrv = Kokkos::create_mirror_view(rv);
// Set random variables
// ith random variable \xi_i = \psi_I(\xi) / \psi_I(1.0)
// where I is determined by the basis ordering (since the component basis
// functions have unit two-norm, \psi_I(1.0) might not be 1.0). We compute
// this by finding the index of the multivariate term that is first order in
// the ith slot, all other orders 0
Teuchos::Array<double> point(dim, 1.0);
Teuchos::Array<double> basis_vals(basis->size());
basis->evaluateBases(point, basis_vals);
for (int i=0; i<dim; ++i) {
Stokhos::MultiIndex<int> term(dim, 0);
term[i] = 1;
int index = basis->index(term);
hrv(i).fastAccessCoeff(index) = 1.0 / basis_vals[index];
}
Kokkos::deep_copy( rv, hrv );
// Compute stochastic response using stochastic Galerkin method
Scalar response = 0;
Perf perf;
if ( cmd.CMD_USE_FIXTURE_QUADRATIC )
perf = fenl< Scalar , Device , BoxElemPart::ElemQuadratic >
( comm , node , cmd.CMD_PRINT , cmd.CMD_USE_TRIALS ,
cmd.CMD_USE_ATOMIC , cmd.CMD_USE_BELOS , cmd.CMD_USE_MUELU ,
cmd.CMD_USE_MEANBASED ,
nelem , diffusion_coefficient , manufactured_solution ,
bc_lower_value , bc_upper_value ,
false , response);
else
perf = fenl< Scalar , Device , BoxElemPart::ElemLinear >
( comm , node , cmd.CMD_PRINT , cmd.CMD_USE_TRIALS ,
cmd.CMD_USE_ATOMIC , cmd.CMD_USE_BELOS , cmd.CMD_USE_MUELU ,
cmd.CMD_USE_MEANBASED ,
nelem , diffusion_coefficient , manufactured_solution ,
bc_lower_value , bc_upper_value ,
false , response);
// std::cout << "newton count = " << perf.newton_iter_count
// << " cg count = " << perf.cg_iter_count << std::endl;
int pce_size = basis->size();
perf.uq_count = pce_size;
perf.newton_iter_count *= pce_size;
perf.cg_iter_count *= pce_size;
perf.map_ratio *= pce_size;
perf.fill_node_set *= pce_size;
perf.scan_node_count *= pce_size;
perf.fill_graph_entries *= pce_size;
perf.sort_graph_entries *= pce_size;
perf.fill_element_graph *= pce_size;
// Compute response mean, variance
perf.response_mean = response.mean();
perf.response_std_dev = response.standard_deviation();
//std::cout << std::endl << response << std::endl;
if ( 0 == comm_rank ) {
print_perf_value( std::cout , cmd , widths , perf );
}
if ( cmd.CMD_SUMMARIZE ) {
Teuchos::TimeMonitor::report (comm.ptr (), std::cout);
}
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
return success;
}
示例2: run
//.........这里部分代码省略.........
using Kokkos::Example::BoxElemPart;
using Kokkos::Example::FENL::fenl;
using Kokkos::Example::FENL::Perf;
const double bc_lower_value = 1 ;
const double bc_upper_value = 2 ;
int nelem[3] = { cmd.USE_FIXTURE_X ,
cmd.USE_FIXTURE_Y ,
cmd.USE_FIXTURE_Z };
// Create KL diffusion coefficient
const double kl_mean = cmd.USE_MEAN;
const double kl_variance = cmd.USE_VAR;
const double kl_correlation = cmd.USE_COR;
const bool kl_exp = cmd.USE_EXPONENTIAL;
const double kl_exp_shift = cmd.USE_EXP_SHIFT;
const double kl_exp_scale = cmd.USE_EXP_SCALE;
const bool kl_disc_exp_scale = cmd.USE_DISC_EXP_SCALE;
//typedef ElementComputationKLCoefficient< Scalar, double, Device > KL;
typedef ExponentialKLCoefficient< Scalar, double, Device > KL;
KL diffusion_coefficient( kl_mean, kl_variance, kl_correlation, dim,
kl_exp, kl_exp_shift, kl_exp_scale,
kl_disc_exp_scale );
typedef typename KL::RandomVariableView RV;
typedef typename RV::HostMirror HRV;
RV rv = diffusion_coefficient.getRandomVariables();
HRV hrv = Kokkos::create_mirror_view(rv);
// Set random variables
// ith random variable \xi_i = \psi_I(\xi) / \psi_I(1.0)
// where I is determined by the basis ordering (since the component basis
// functions have unit two-norm, \psi_I(1.0) might not be 1.0). We compute
// this by finding the index of the multivariate term that is first order in
// the ith slot, all other orders 0
Teuchos::Array<double> point(dim, 1.0);
Teuchos::Array<double> basis_vals(num_pce);
basis->evaluateBases(point, basis_vals);
for (int i=0; i<dim; ++i) {
Stokhos::MultiIndex<int> term(dim, 0);
term[i] = 1;
int index = basis->index(term);
hrv(i).fastAccessCoeff(index) = 1.0 / basis_vals[index];
}
Kokkos::deep_copy( rv, hrv );
// Compute stochastic response using stochastic Galerkin method
Scalar response = 0;
Perf perf;
if ( cmd.USE_FIXTURE_QUADRATIC )
perf = fenl< Scalar , Device , BoxElemPart::ElemQuadratic >
( comm , node , cmd.USE_FENL_XML_FILE ,
cmd.PRINT , cmd.USE_TRIALS ,
cmd.USE_ATOMIC , cmd.USE_BELOS , cmd.USE_MUELU ,
cmd.USE_MEANBASED ,
nelem , diffusion_coefficient , cmd.USE_ISOTROPIC , cmd.USE_COEFF_SRC ,
cmd.USE_COEFF_ADV , bc_lower_value , bc_upper_value ,
response, qd );
else
perf = fenl< Scalar , Device , BoxElemPart::ElemLinear >
( comm , node , cmd.USE_FENL_XML_FILE ,
cmd.PRINT , cmd.USE_TRIALS ,
cmd.USE_ATOMIC , cmd.USE_BELOS , cmd.USE_MUELU ,
cmd.USE_MEANBASED ,
nelem , diffusion_coefficient , cmd.USE_ISOTROPIC , cmd.USE_COEFF_SRC ,
cmd.USE_COEFF_ADV , bc_lower_value , bc_upper_value ,
response , qd );
// std::cout << "newton count = " << perf.newton_iter_count
// << " cg count = " << perf.cg_iter_count << std::endl;
perf.uq_count = num_quad_points;
perf.newton_iter_count *= num_quad_points;
perf.cg_iter_count *= num_pce;
perf.map_ratio *= num_pce;
perf.fill_node_set *= num_pce;
perf.scan_node_count *= num_pce;
perf.fill_graph_entries *= num_pce;
perf.sort_graph_entries *= num_pce;
perf.fill_element_graph *= num_pce;
// Compute response mean, variance
perf.response_mean = response.mean();
perf.response_std_dev = response.standard_deviation();
//std::cout << std::endl << response << std::endl;
if ( 0 == comm_rank ) {
print_perf_value( std::cout , cmd , widths , perf );
}
if ( cmd.SUMMARIZE ) {
Teuchos::TimeMonitor::report (comm.ptr (), std::cout);
print_memory_usage(std::cout, *comm);
}
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
return success;
}