本文整理汇总了C++中SMeshBuffer::recalculateBoundingBox方法的典型用法代码示例。如果您正苦于以下问题:C++ SMeshBuffer::recalculateBoundingBox方法的具体用法?C++ SMeshBuffer::recalculateBoundingBox怎么用?C++ SMeshBuffer::recalculateBoundingBox使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SMeshBuffer
的用法示例。
在下文中一共展示了SMeshBuffer::recalculateBoundingBox方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: createMeshFromSoftBody
IMesh* MeshTools::createMeshFromSoftBody(btSoftBody* softBody)
{
SMeshBuffer* buffer = new SMeshBuffer();
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
/* Each soft body contain an array of vertices (nodes/particles_mass) */
btSoftBody::tNodeArray& nodes(softBody->m_nodes);
// Convert bullet nodes to vertices
for(int i=0;i<nodes.size();++i)
{
const btSoftBody::Node& n=nodes[i];
const btVector3 normal=n.m_n;
const btVector3 pos=n.m_x;
vtx.Pos.set(pos.getX(), pos.getY(), pos.getZ());
vtx.Normal.set(normal.getX(), normal.getY(), normal.getZ());
// TODO: calculate texture coords
//vtx.TCoords.set(tsx, tsy);
buffer->Vertices.push_back(vtx);
}
// Convert triangles of the softbody to an index list
for(int i=0;i<softBody->m_faces.size();++i)
{
auto faces = softBody->m_faces;
btSoftBody::Node* node_0=faces[i].m_n[0];
btSoftBody::Node* node_1=faces[i].m_n[1];
btSoftBody::Node* node_2=faces[i].m_n[2];
const int indices[] =
{
int(node_0-&nodes[0]),
int(node_1-&nodes[0]),
int(node_2-&nodes[0])
};
for(int j=0;j<3;++j)
buffer->Indices.push_back(indices[j]);
}
buffer->recalculateBoundingBox();
// Default the mesh to stream because most likely we will be updating
// the vertex positions every frame to deal with softbody movement.
buffer->setHardwareMappingHint(EHM_STREAM);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
示例2: addstrip
void addstrip(const HeightMap &hm, colour_func cf, u16 y0, u16 y1, u32 bufNum)
{
SMeshBuffer *buf = 0;
if (bufNum<Mesh->getMeshBufferCount())
{
buf = (SMeshBuffer*)Mesh->getMeshBuffer(bufNum);
}
else
{
// create new buffer
buf = new SMeshBuffer();
Mesh->addMeshBuffer(buf);
// to simplify things we drop here but continue using buf
buf->drop();
}
buf->Vertices.set_used((1 + y1 - y0) * Width);
u32 i=0;
for (u16 y = y0; y <= y1; ++y)
{
for (u16 x = 0; x < Width; ++x)
{
const f32 z = hm.get(x, y);
const f32 xx = (f32)x/(f32)Width;
const f32 yy = (f32)y/(f32)Height;
S3DVertex& v = buf->Vertices[i++];
v.Pos.set(x, Scale * z, y);
v.Normal.set(hm.getnormal(x, y, Scale));
v.Color=cf(xx, yy, z);
v.TCoords.set(xx, yy);
}
}
buf->Indices.set_used(6 * (Width - 1) * (y1 - y0));
i=0;
for(u16 y = y0; y < y1; ++y)
{
for(u16 x = 0; x < Width - 1; ++x)
{
const u16 n = (y-y0) * Width + x;
buf->Indices[i]=n;
buf->Indices[++i]=n + Width;
buf->Indices[++i]=n + Width + 1;
buf->Indices[++i]=n + Width + 1;
buf->Indices[++i]=n + 1;
buf->Indices[++i]=n;
++i;
}
}
buf->recalculateBoundingBox();
}
示例3: createMeshFromHeightmap
//.........这里部分代码省略.........
vert.Pos.set(x, y, thisHeight);
// I'm only averaging normals along the 4 compass directions. It's
// arguable whether diagonals should count; I chose to ignore diagonals.
// Ignoring diagonals allows me to assume the "run" in rise/run is always
// just one unit; if you add diagonals here you'll also need to change
// the slope calculation to use the actual distance instead of assuming 1.
vector2di offsetsArray[] = {
vector2di( 1, 0), // 3 o'clock
vector2di( 0, 1), // 12 o'clock
vector2di(-1, 0), // 9 o'clock
vector2di( 0,-1) // 6 o'clock
};
// Calculate the normals of the surrounding slopes.
// Uses the image, not just the tile patch size, so it will
// calculate correct normals for vertices on tile edges.
for (size_t i=-0; i < 4; ++i)
{
vector2di offset = vector2di(x,y) + offsetsArray[i];
// Skip this offset if it's outside the image
if (offset.X < 0 || offset.Y < 0 || offset.X >= (s32)imageDimension.Width || offset.Y >= (s32)imageDimension.Height)
continue;
vector2di otherPixelPos(
startAtPixel.X+x+offset.X,
startAtPixel.Y-y-offset.Y
);
float otherHeight = 255 - image->getPixel((u32)otherPixelPos.X, (u32)otherPixelPos.Y).getAverage();
// The code Irrlicht's in terrain scene node does all kinds of complicated
// business with cross products and such - waaay over complicated. You don't need
// all that stuff. Dude it' s a heightmap: all you need to worray about is
// rise over run on unit intervals! Algebra 1 type stuff, y = mx + c
// Calculate the rise of the line over the run, taking into account the fact
// that the offset could be in either direction.
float rise = (offset.X < 0 || offset.Y < 0)? thisHeight - otherHeight : otherHeight - thisHeight;
// Assuming that run = 1, m = rise / run is just m = rise.
float m = rise;
// The the slope of the normal is just the negative of the reciprocal of the line slope.
float n = -1.0f / rise;
// The X,Y of the normal vector is just going to be the X and Y of the offset
// (think about it - obviously the normal of the slope must tilt in the direction of the run)
// and the Z of the normal vector is just the slope of the normal over that run.
vector3df normVect(offset.X, offset.Y, n);
//vert.Normal += normVect;
}
//vert.Normal.normalize();
vert.Normal.set(0,0,-1.0f);
}
}
// Pre-allocate index data to 2*3*Width*Height for triangles.
// There is actually 1 less square per count of vertices though,
// for instance if you had 2x2 vertices, you only have 1 square.
buffer->Indices.set_used(2*3*(useTileSize.Width-1)*(useTileSize.Height-1));
// Start with 1 and generate all the triangles from their top right corners.
// Like this (A is top right corner at x,y):
//
// y=1 B---A
// | / |
// y=0 C---D
// x=0 x=1
for (u32 dst=0, x=1; x < useTileSize.Width; ++x)
{
for (u32 y=1; y < useTileSize.Height; ++y)
{
u32 A = getIndex(useTileSize, x, y );
u32 B = getIndex(useTileSize, x-1, y );
u32 C = getIndex(useTileSize, x-1, y-1 );
u32 D = getIndex(useTileSize, x, y-1 );
buffer->Indices[dst++] = C;
buffer->Indices[dst++] = B;
buffer->Indices[dst++] = A;
buffer->Indices[dst++] = D;
buffer->Indices[dst++] = C;
buffer->Indices[dst++] = A;
}
}
buffer->recalculateBoundingBox();
buffer->setHardwareMappingHint(EHM_STATIC);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
示例4: splitMeshZ
//.........这里部分代码省略.........
// 1 cont. AB' AB' AB' replaces B in P
// 2 - B B proper is in Q and not in P
// 2 cont. - - Link B-C is not split
// 3 - C C proper is in Q and not in P
// 3 cont. CA' CA' CA' replaces C in P
//
// Now, read the columns P and Q vertically top to bottom to see the resultant vertex order.
// The triangle P is trivially still the correct winding order; it is just a smaller triangle now.
// The new quad Q retains the old triangle's winding order property for the following reason:
// As you wrapped around a full circle in old triangle A-B-C you would have traversed C-A then A-B.
// The link C-A has been cut and vertex CA' inserted.
// The link A-B has been cut and vertex AB' inserted.
// If you traverse the new shape starting from the _middle_ you follow the following path:
// B-C C-CA' CA'-AB' AB'-B B-C (again)
// Compare to old triangle:
// B-C C-A A-B B-C (again)
// Even though vertex A has been cut off and replaced with two vertices, the two
// new vertices lie along the path that the old links took and are in the new shape in the right order.
mid1 = linkSplitter.processLink(leftShape, rightShape, a, b);
mid2 = linkSplitter.processLink(leftShape, rightShape, b, c);
mid3 = linkSplitter.processLink(leftShape, rightShape, c, a);
}
// If a triangle was split then two of those three midpoints are inhabited by a vertex.
// We want to get them both in mid1 and mid2 AND we need them in correct order.
PsblVertPtr cut1 = (mid1 && mid2)? mid1 : mid2;
PsblVertPtr cut2 = (mid2 && mid3)? mid3 : mid2;
if (cut1 && cut2)
{
vector<PsblVertPtr> chain = linkSplitter.chopLink(cut1, cut2, 1);
linkSplitter.insertPoints(leftShape, cut1, cut2, chain);
linkSplitter.insertPoints(rightShape, cut1, cut2, chain);
}
linkSplitter.addConvexShape(leftShape, leftMeshBuf, -offset/2);
linkSplitter.addConvexShape(rightShape, rightMeshBuf, offset/2);
// Add any edges of the left shape that lie along the border.
linkSplitter.addEdgeLinks(leftShape, leftEdgeLinks);
// Right side polys that share a border with left side ones will have
// opposite winding order. In order for set_intersection to consider them
// as matches, we'll store the right side links in reversed order.
std::reverse(rightShape.begin(), rightShape.end());
linkSplitter.addEdgeLinks(rightShape, rightEdgeLinks);
}
SMesh* leftMesh = new SMesh();
leftMeshBuf->recalculateBoundingBox();
leftMeshBuf->setHardwareMappingHint(EHM_STATIC);
leftMesh->addMeshBuffer(leftMeshBuf);
leftMesh->recalculateBoundingBox();
leftMeshBuf->drop(); // we drop the buf, mesh obj has it now
SMesh* rightMesh = new SMesh();
rightMeshBuf->recalculateBoundingBox();
rightMeshBuf->setHardwareMappingHint(EHM_STATIC);
rightMesh->addMeshBuffer(rightMeshBuf);
rightMesh->recalculateBoundingBox();
rightMeshBuf->drop(); // we drop the buf, mesh obj has it now
SMesh* middleMesh = NULL;
if (zInsert > 0)
{
set<pair<PsblVertPtr,PsblVertPtr>> result;
std::set_intersection(
leftEdgeLinks.begin(), leftEdgeLinks.end(),
rightEdgeLinks.begin(), rightEdgeLinks.end(),
std::inserter(result, result.begin())
);
size_t debugsize = result.size();
if (result.size() > 0)
{
SMeshBuffer* middleMeshBuf = new SMeshBuffer();
vector<PsblVertPtr> shape(4);
for (auto it=result.begin(); it!=result.end(); ++it)
{
shape[0] = it->second;
shape[1] = it->first;
shape[2] = it->first->duplicate(offset);
shape[3] = it->second->duplicate(offset);
linkSplitter.addConvexShape(shape, middleMeshBuf, -offset/2);
}
middleMesh = new SMesh();
middleMeshBuf->recalculateBoundingBox();
middleMeshBuf->setHardwareMappingHint(EHM_STATIC);
middleMesh->addMeshBuffer(middleMeshBuf);
middleMesh->recalculateBoundingBox();
middleMeshBuf->drop(); // we drop the buf, mesh obj has it now
}
}
return SplitMeshResult {leftMesh, middleMesh, rightMesh};
}
示例5: crosses
//.........这里部分代码省略.........
}
};
Visitor visitor;
tree.triangulate(triangles, section, min_height, max_height, &visitor);
//tree.sweep(triangles, section, &visitor);
//cout << "num triangle points: " << triangles.size() << endl;
vector<QuadTreePtr> leaves;
tree.dumpLeaves(leaves);
//cout << "num leaves: " << leaves.size() << endl;
/*
for (QuadTreePtr p1 : leaves)
for (QuadTreePtr p2 : leaves)
if (p1 != p2)
if (p1->isAdjacent(p2))
if (!visitor.has(p1, p2))
{
auto sz1 = p1->region.getSize();
auto sz2 = p2->region.getSize();
auto c1 = p1->region.getCenter();
auto c2 = p2->region.getCenter();
char const* path1 = p1->getPath().c_str();
char const* path2 = p2->getPath().c_str();
cout << path1 << endl;
cout << path2 << endl;
cout << "Missing pair of adjacent vertices." << endl;
}
float x1 = section.UpperLeftCorner.X;
float x2 = section.LowerRightCorner.X;
float y1 = section.UpperLeftCorner.Y;
float y2 = section.LowerRightCorner.Y;
*/
/*
d---c
| / |
a---b
*/
/*
S3DVertex sa;
sa.Pos = vector3df(x1, y1, 0);
PsblVertPtr a = new PossibleVertex(sa);
S3DVertex sb;
sb.Pos = vector3df(x2, y1, 0);
PsblVertPtr b = new PossibleVertex(sb);
S3DVertex sc;
sc.Pos = vector3df(x2, y2, 0);
PsblVertPtr c = new PossibleVertex(sc);
S3DVertex sd;
sd.Pos = vector3df(x1, y2, 0);
PsblVertPtr d = new PossibleVertex(sd);
// a-b-c
// a-c-d
triangles.push_back(a);
triangles.push_back(b);
triangles.push_back(c);
triangles.push_back(a);
triangles.push_back(c);
triangles.push_back(d);
triangles.push_back(c);
triangles.push_back(b);
triangles.push_back(a);
triangles.push_back(d);
triangles.push_back(c);
triangles.push_back(a);
*/
SMeshBuffer* buffer = new SMeshBuffer();
for (auto pv : triangles)
pv->addToMeshBuf(buffer, vector3df());
if (buffer->getIndexCount() % 3 > 0)
throw std::logic_error("SurfaceQuadTree triangulation added a 'triangle' with less than 3 vertices in it.");
//cout << "num vertices " << buffer->getVertexCount() << endl;
//cout << "num indices " << buffer->getIndexCount() << endl;
buffer->recalculateBoundingBox();
buffer->setHardwareMappingHint(EHM_STATIC);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
示例6: createRainbowMeshBuffer
SMeshBuffer* createRainbowMeshBuffer( // XY-plane, normale is -Z
f32 outerRadius,
f32 innerRadius,
f32 zAngleStart,
f32 zAngleEnd,
u32 segments,
const core::vector3df& pos)
{
SMeshBuffer* buffer = new SMeshBuffer();
if (!buffer)
return 0;
//! outer-cylinder material
buffer->Material.Lighting = false;
buffer->Material.MaterialType = video::EMT_TRANSPARENT_ALPHA_CHANNEL;
buffer->Material.Wireframe = false;
buffer->Material.FogEnable = false;
buffer->Material.BackfaceCulling = true;
buffer->Vertices.clear();
buffer->Indices.clear();
// buffer->Vertices.reallocate();
// buffer->Vertices.set_used(0);
// buffer->Indices.reallocate();
// buffer->Indices.set_used(0);
//! Constants
const f32 phi = 2.0f*core::PI * (zAngleEnd-zAngleStart) / (360.0f * (f32)segments);
const f32 phiStart = 2.0f*core::PI * (zAngleStart-90.0f) / 360.0f;
const f32 z = pos.Z;
//! Locals
f32 x0,y0,x1,y1,x2,y2,x3,y3,sinPhi,cosPhi;
//! Tables
f32* sinTable = new f32[segments+1];
f32* cosTable = new f32[segments+1];
for (u32 i=0; i<segments+1; ++i)
{
const f32 angle = (f32)i*phi + phiStart;
sinTable[i] = sinf(angle);
cosTable[i] = cosf(angle);
}
//! build MeshBuffer (each segment consists of 2 triangles, important for texturing, each segment contains one complete texture)
for (u32 i=0; i<segments; ++i)
{
x0 = pos.X - innerRadius * sinTable[i+1];
y0 = pos.Y + innerRadius * cosTable[i+1];
x1 = pos.X - outerRadius * sinTable[i+1];
y1 = pos.Y + outerRadius * cosTable[i+1];
x2 = pos.X - outerRadius * sinTable[i];
y2 = pos.Y + outerRadius * cosTable[i];
x3 = pos.X - innerRadius * sinTable[i];
y3 = pos.Y + innerRadius * cosTable[i];
buffer->Vertices.push_back(video::S3DVertex(x0,y0,z,0,0,-1,0xFFFFFFFF,0,1)); // A
buffer->Vertices.push_back(video::S3DVertex(x1,y1,z,0,0,-1,0xFFFFFFFF,0,0)); // B
buffer->Vertices.push_back(video::S3DVertex(x2,y2,z,0,0,-1,0xFFFFFFFF,1,0)); // C
buffer->Vertices.push_back(video::S3DVertex(x3,y3,z,0,0,-1,0xFFFFFFFF,1,1)); // D
buffer->Indices.push_back(4*i+0); // A
buffer->Indices.push_back(4*i+1); // B
buffer->Indices.push_back(4*i+2); // C
buffer->Indices.push_back(4*i+0); // A
buffer->Indices.push_back(4*i+2); // C
buffer->Indices.push_back(4*i+3); // D
}
delete [] sinTable;
delete [] cosTable;
//! BBox
buffer->recalculateBoundingBox();
return buffer;
} // END FUNCTION
示例7: CreateCylinderSceneNode
IMeshSceneNode* CustomSceneNodeManager::CreateCylinderSceneNode(scene::ISceneManager* sceneManager, s32 id, SColor& color, unsigned int resolution, float radius, float height)
{
/*if (!cylinderMesh)
{*/
if (resolution >= 4)
{
SMesh* newCylinderMesh = new SMesh();
SMeshBuffer* buf = new SMeshBuffer();
newCylinderMesh->addMeshBuffer(buf);
buf->MappingHint_Vertex = EHM_STATIC;
buf->MappingHint_Index = EHM_STATIC;
buf->drop();
int noWarningSignedResolution = resolution;
float currentTheta = 0.0f;
float skipAmount = 2.0f*PI / (float)resolution;
float halfHeight = height / 2.0f;
S3DVertex temp1 = S3DVertex(Vector3(0.0f, halfHeight, 0.0f), Vector3_Zero, color, vector2d<f32>(0.0f, 0.0f));
S3DVertex temp2 = S3DVertex(Vector3(0.0f, -halfHeight, 0.0f), Vector3_Zero, color, vector2d<f32>(0.0f, 1.0f));
for(int i = 0; i < noWarningSignedResolution; i++)
{
float x = cosf(currentTheta) * radius;
float z = sinf(currentTheta) * radius;
temp1.Pos.X = x;
temp1.Pos.Z = z;
temp1.TCoords.X = currentTheta / 2.0f*PI;
temp2.Pos.X = x;
temp2.Pos.Z = z;
temp2.TCoords.X = currentTheta / 2.0f*PI;
buf->Vertices.push_back(temp1);
buf->Vertices.push_back(temp2);
currentTheta += skipAmount;
}
temp1.Pos.X = 0.0f;
temp1.Pos.Z = 0.0f;
temp1.TCoords.X = 0.0f;
temp2.Pos.X = 0.0f;
temp2.Pos.Z = 0.0f;
temp1.TCoords.X = 0.0f;
buf->Vertices.push_back(temp1);
buf->Vertices.push_back(temp2);
//Get indices
for(int i = 0; i < noWarningSignedResolution - 1; i++)
{
buf->Indices.push_back(i*2);
buf->Indices.push_back(i*2+2);
buf->Indices.push_back(i*2+1);
buf->Indices.push_back(i*2+1);
buf->Indices.push_back(i*2+2);
buf->Indices.push_back(i*2+3);
buf->Indices.push_back(i*2);
buf->Indices.push_back(buf->Vertices.size()-2);
buf->Indices.push_back(i*2+2);
buf->Indices.push_back(i*2+1);
buf->Indices.push_back(i*2+3);
buf->Indices.push_back(buf->Vertices.size()-1);
}
buf->Indices.push_back(buf->Vertices.size()-4);
buf->Indices.push_back(0);
buf->Indices.push_back(buf->Vertices.size()-3);
buf->Indices.push_back(buf->Vertices.size()-3);
buf->Indices.push_back(0);
buf->Indices.push_back(1);
buf->Indices.push_back(buf->Vertices.size()-4);
buf->Indices.push_back(buf->Vertices.size()-2);
buf->Indices.push_back(0);
buf->Indices.push_back(buf->Vertices.size()-3);
buf->Indices.push_back(1);
buf->Indices.push_back(buf->Vertices.size()-1);
//Calculate normals
CalculateNormals(buf->Vertices, buf->Indices);
buf->recalculateBoundingBox();
newCylinderMesh->recalculateBoundingBox();
IMeshSceneNode* node = sceneManager->addMeshSceneNode(newCylinderMesh);
newCylinderMesh->drop();
return node;
}
/* return NULL;
//.........这里部分代码省略.........
示例8: CreateCapsuleSceneNode
//.........这里部分代码省略.........
temp1.TCoords.Y = currentPhi / PI;
buf->Vertices.push_back(temp1);
currentTheta += thetaSkipAmount;
}
currentTheta = 0.0f;
currentPhi += phiSkipAmount;
}
temp1.Pos.X = 0.0f;
temp1.Pos.Y = -(halfHeight + radius);
temp1.Pos.Z = 0.0f;
buf->Vertices.push_back(temp1);
//Top vertex indices
for(unsigned int i = 1; i <= resolution; i++)
{
if (i == resolution)
{
buf->Indices.push_back(i);
buf->Indices.push_back(0);
buf->Indices.push_back(1);
}
else
{
buf->Indices.push_back(i);
buf->Indices.push_back(0);
buf->Indices.push_back(i + 1);
}
}
//Get indices
int i = 1 + resolution;
while(i < buf->Vertices.size() - 1)
{
for(unsigned int j = 1; j < resolution; j++)
{
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution);
buf->Indices.push_back(i - noWarningSignedResolution + 1);
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution + 1);
buf->Indices.push_back(i + 1);
i++;
}
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution);
buf->Indices.push_back(i - noWarningSignedResolution + 1 - resolution);
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution + 1 - resolution);
buf->Indices.push_back(i + 1 - resolution);
i++;
}
//Bottom vertex indices
for(int i = resolution; i >= 1 ; i--)
{
if (i == 1)
{
/*buf->Indices.push_back(i);
buf->Indices.push_back(0);
buf->Indices.push_back(1);*/
buf->Indices.push_back(buf->Vertices.size() -1);
buf->Indices.push_back(buf->Vertices.size() -1 - i);
buf->Indices.push_back(buf->Vertices.size() - 1 - resolution);
}
else
{
buf->Indices.push_back(buf->Vertices.size() -1);
buf->Indices.push_back(buf->Vertices.size() -1 - i);
buf->Indices.push_back(buf->Vertices.size() - i);
}
}
//Calculate normals
CalculateNormals(buf->Vertices, buf->Indices);
buf->recalculateBoundingBox();
newCapsuleMesh->recalculateBoundingBox();
IMeshSceneNode* node = sceneManager->addMeshSceneNode(newCapsuleMesh);
newCapsuleMesh->drop();
return node;
}
return NULL;
}
示例9: CreateConeSceneNode
IMeshSceneNode* CustomSceneNodeManager::CreateConeSceneNode(scene::ISceneManager* sceneManager, s32 id, SColor& color, unsigned int resolution, float radius, float height)
{
if (resolution >= 4)
{
/*IMesh* newConeMesh = sceneManager->getGeometryCreator()->createConeMesh(radius, height, resolution, color, color);
IMeshSceneNode* node = sceneManager->addMeshSceneNode(newConeMesh);
sceneManager->getMeshCache()->addMesh(irr::io::path("ConeMesh"), (irr::scene::IAnimatedMesh*)newConeMesh);
newConeMesh->drop();*/
SMesh* newConeMesh = new SMesh();
SMeshBuffer* buf = new SMeshBuffer();
newConeMesh->addMeshBuffer(buf);
buf->MappingHint_Vertex = EHM_STATIC;
buf->MappingHint_Index = EHM_STATIC;
buf->drop();
int noWarningSignedResolution = resolution;
float currentTheta = 0.0f;
float skipAmount = 2.0f*PI / (float)resolution;
float halfHeight = height / 2.0f;
S3DVertex temp1 = S3DVertex(Vector3(0.0f, halfHeight, 0.0f), Vector3_Zero, color, vector2d<f32>(0.0f, 0.0f));
S3DVertex temp2 = S3DVertex(Vector3(0.0f, -halfHeight, 0.0f), Vector3_Zero, color, vector2d<f32>(0.0f, 1.0f));
for(int i = 0; i < noWarningSignedResolution; i++)
{
float x = cosf(currentTheta) * radius;
float z = sinf(currentTheta) * radius;
temp2.Pos.X = x;
temp2.Pos.Z = z;
temp2.TCoords.X = currentTheta / 2.0f*PI;
buf->Vertices.push_back(temp2);
currentTheta += skipAmount;
}
buf->Vertices.push_back(temp1);
//Get side indices
for(int i = 0; i < noWarningSignedResolution - 1; i++)
{
buf->Indices.push_back(i);
buf->Indices.push_back(buf->Vertices.size()-1);
buf->Indices.push_back(i+1);
}
buf->Indices.push_back(buf->Vertices.size()-2);
buf->Indices.push_back(buf->Vertices.size()-1);
buf->Indices.push_back(0);
temp2.Pos.X = 0.0f;
temp2.Pos.Z = 0.0f;
buf->Vertices.push_back(temp2);
//Get bottom indices
for(int i = 0; i < noWarningSignedResolution - 1; i++)
{
buf->Indices.push_back(i);
buf->Indices.push_back(i+1);
buf->Indices.push_back(buf->Vertices.size()-1);
}
buf->Indices.push_back(buf->Vertices.size()-1);
buf->Indices.push_back(buf->Vertices.size()-3);
buf->Indices.push_back(0);
//Calculate normals
CalculateNormals(buf->Vertices, buf->Indices);
buf->recalculateBoundingBox();
newConeMesh->recalculateBoundingBox();
IMeshSceneNode* node = sceneManager->addMeshSceneNode(newConeMesh);
newConeMesh->drop();
return node;
}
return NULL;
}
示例10: createHillPlaneMesh
// creates a hill plane
IAnimatedMesh* CGeometryCreator::createHillPlaneMesh(const core::dimension2d<f32>& tileSize, const core::dimension2d<s32>& tc,
video::SMaterial* material, f32 hillHeight, const core::dimension2d<f32>& ch,
const core::dimension2d<f32>& textureRepeatCount)
{
core::dimension2d<s32> tileCount = tc;
tileCount.Height += 1;
tileCount.Width += 1;
core::dimension2d<f32> countHills = ch;
SMeshBuffer* buffer = new SMeshBuffer();
SMesh* mesh = new SMesh();
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
vtx.Normal.set(0,0,0);
if (countHills.Width < 0.01f) countHills.Width = 1;
if (countHills.Height < 0.01f) countHills.Height = 1;
f32 halfX = (tileSize.Width * tileCount.Width) / 2;
f32 halfY = (tileSize.Height * tileCount.Height) / 2;
// create vertices
s32 x = 0;
s32 y = 0;
core::dimension2d<f32> tx;
tx.Width = 1.0f / (tileCount.Width / textureRepeatCount.Width);
tx.Height = 1.0f / (tileCount.Height / textureRepeatCount.Height);
for (x=0; x<tileCount.Width; ++x)
for (y=0; y<tileCount.Height; ++y)
{
vtx.Pos.set(tileSize.Width * x - halfX, 0, tileSize.Height * y - halfY);
vtx.TCoords.set(-(f32)x * tx.Width, (f32)y * tx.Height);
if (hillHeight)
vtx.Pos.Y = (f32)(sin(vtx.Pos.X * countHills.Width * engine::core::PI / halfX) *
cos(vtx.Pos.Z * countHills.Height * engine::core::PI / halfY))
*hillHeight;
buffer->Vertices.push_back(vtx);
}
// create indices
for (x=0; x<tileCount.Width-1; ++x)
for (y=0; y<tileCount.Height-1; ++y)
{
s32 current = y*tileCount.Width + x;
buffer->Indices.push_back(current);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + tileCount.Width);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + 1 + tileCount.Width);
buffer->Indices.push_back(current + tileCount.Width);
}
// recalculate normals
for (s32 i=0; i<(s32)buffer->Indices.size(); i+=3)
{
core::plane3d<f32> p(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos);
p.Normal.normalize();
buffer->Vertices[buffer->Indices[i+0]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = p.Normal;
}
if (material)
buffer->Material = *material;
buffer->recalculateBoundingBox();
SAnimatedMesh* animatedMesh = new SAnimatedMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
animatedMesh->addMesh(mesh);
animatedMesh->recalculateBoundingBox();
mesh->drop();
buffer->drop();
return animatedMesh;
}
示例11: createTerrainMesh
//.........这里部分代码省略.........
blockSize.Width = hMapSize.Width - processed.X;
if (processed.Y + blockSize.Height > hMapSize.Height)
blockSize.Height = hMapSize.Height - processed.Y;
SMeshBuffer* buffer = new SMeshBuffer();
s32 x,y;
// add vertices of vertex block
for (y=0; y<blockSize.Height; ++y)
for (x=0; x<blockSize.Width; ++x)
{
video::SColor clr = heightmap->getPixel(x+processed.X, y+processed.Y);
f32 height = ((clr.getRed() + clr.getGreen() + clr.getBlue()) / 3.0f)/255.0f * maxHeight;
vtx.Pos.set((f32)(x+processed.X) * stretchSize.Width,
height, (f32)(y+processed.Y) * stretchSize.Height);
vtx.TCoords.set((f32)(x+0.5f) / ((f32)blockSize.Width),
(f32)(y+0.5f) / ((f32)blockSize.Height));
buffer->Vertices.push_back(vtx);
}
// add indices of vertex block
for (y=0; y<blockSize.Height-1; ++y)
for (x=0; x<blockSize.Width-1; ++x)
{
s32 c = (y*blockSize.Width) + x;
buffer->Indices.push_back(c);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1 + blockSize.Width);
}
// recalculate normals
for (s32 i=0; i<(s32)buffer->Indices.size(); i+=3)
{
core::plane3d<f32> p(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos);
p.Normal.normalize();
buffer->Vertices[buffer->Indices[i+0]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = p.Normal;
}
if (buffer->Vertices.size())
{
// create texture for this block
video::IImage* img = new video::CImage(texture,
core::position2d<s32>((s32)(processed.X*thRel.X), (s32)(processed.Y*thRel.Y)),
core::dimension2d<s32>((s32)(blockSize.Width*thRel.X), (s32)(blockSize.Height*thRel.Y)));
sprintf(textureName, "terrain%d_%d", tm, mesh->getMeshBufferCount());
material.Texture1 = driver->addTexture(textureName, img);
if (material.Texture1)
{
sprintf(tmp, "Generated terrain texture (%dx%d): %s",
material.Texture1->getSize().Width,
material.Texture1->getSize().Height,
textureName);
os::Printer::log(tmp);
}
else
os::Printer::log("Could not create terrain texture.", textureName, ELL_ERROR);
buffer->Material = material;
img->drop();
}
buffer->recalculateBoundingBox();
mesh->addMeshBuffer(buffer);
buffer->drop();
// keep on processing
processed.X += maxVtxBlockSize.Width - borderSkip;
}
// keep on processing
processed.X = 0;
processed.Y += maxVtxBlockSize.Height - borderSkip;
}
SAnimatedMesh* animatedMesh = new SAnimatedMesh();
mesh->recalculateBoundingBox();
animatedMesh->addMesh(mesh);
animatedMesh->recalculateBoundingBox();
mesh->drop();
return animatedMesh;
}