当前位置: 首页>>代码示例>>C++>>正文


C++ SListConstIterator::valid方法代码示例

本文整理汇总了C++中SListConstIterator::valid方法的典型用法代码示例。如果您正苦于以下问题:C++ SListConstIterator::valid方法的具体用法?C++ SListConstIterator::valid怎么用?C++ SListConstIterator::valid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SListConstIterator的用法示例。


在下文中一共展示了SListConstIterator::valid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

void SpringEmbedderFRExact::ArrayGraph::initCC(int i)
{
	System::alignedMemoryFree(m_orig);
	System::alignedMemoryFree(m_src);
	System::alignedMemoryFree(m_tgt);
	System::alignedMemoryFree(m_x);
	System::alignedMemoryFree(m_y);
	System::alignedMemoryFree(m_nodeWeight);

	m_numNodes = m_nodesInCC[i].size();
	m_numEdges = 0;

	m_orig       = (node *)   System::alignedMemoryAlloc16(m_numNodes*sizeof(node));
	m_x          = (double *) System::alignedMemoryAlloc16(m_numNodes*sizeof(double));
	m_y          = (double *) System::alignedMemoryAlloc16(m_numNodes*sizeof(double));
	m_nodeWeight = (double *) System::alignedMemoryAlloc16(m_numNodes*sizeof(double));

	int j = 0;
	SListConstIterator<node> it;
	for(it = m_nodesInCC[i].begin(); it.valid(); ++it, ++j) {
		node v = *it;

		m_orig[j] = v;
		m_mapNode[v] = j;

		m_x[j] = m_ga->x(v);
		m_y[j] = m_ga->y(v);
		
		if (m_useNodeWeight)
			m_nodeWeight[j] = (m_ga->attributes() & GraphAttributes::nodeWeight) ? m_ga->weight(v) : 1.0;
		else
			m_nodeWeight[j] = 1.0;
		adjEntry adj;
		forall_adj(adj,v)
			if(v->index() < adj->twinNode()->index())
				++m_numEdges;
	}

	m_src = (int *) System::alignedMemoryAlloc16(m_numEdges*sizeof(int));
	m_tgt = (int *) System::alignedMemoryAlloc16(m_numEdges*sizeof(int));

	j = 0;
	int srcId;
	for(it = m_nodesInCC[i].begin(), srcId = 0; it.valid(); ++it, ++srcId) {
		node v = *it;

		adjEntry adj;
		forall_adj(adj,v) {
			node w = adj->twinNode();
			if(v->index() < w->index()) {
				m_src[j] = srcId;
				m_tgt[j] = m_mapNode[w];
				++j;
			}
		}
	}
开发者ID:SiteView,项目名称:NNMQT,代码行数:56,代码来源:SpringEmbedderFRExact.cpp

示例2: doInit

void FaceSinkGraph::doInit()
{
	const ConstCombinatorialEmbedding &E = *m_pE;

	NodeArray<node> sinkSwitch(E,nullptr); // corresponding node in F (if any)
	NodeArray<bool> isSinkSwitch(E,true);

	NodeArray<int> visited(E,-1);
	int faceNo = -1;
	for(face f : E.faces)
	{
		faceNo++;
		node faceNode = newNode();
		m_originalFace[faceNode] = f;

		SListPure<node> nodesInF;

		adjEntry adj1 = f->firstAdj(), adj = adj1;
		do {
			node v = adj->theNode();
			// if the graph is not biconnected, then node v can visited more than once
			if (visited[v] != faceNo) {
				nodesInF.pushBack(v);
				visited[v] = faceNo;
			}

			if (v == m_source)
				m_containsSource[faceNode] = true;

			isSinkSwitch[adj->theEdge()->source()] = false;

			adj = adj->twin()->cyclicPred();
		} while (adj != adj1);

		SListConstIterator<node> it;
		for(it = nodesInF.begin(); it.valid(); ++it)
		{
			node v = *it;
			if(isSinkSwitch[v])	{
				if (sinkSwitch[v] == nullptr) {
					node vF = newNode();
					m_originalNode[vF] = v;
					sinkSwitch[v] = vF;
				}

				newEdge(faceNode,sinkSwitch[v]);
			}
		}

		for(it = nodesInF.begin(); it.valid(); ++it)
			isSinkSwitch[*it] = true;
	}
}
开发者ID:ogdf,项目名称:ogdf,代码行数:53,代码来源:FaceSinkGraph.cpp

示例3: geometry

	//
	// o u t p u t O p e r a t o r  for DinoUmlDiagramGraph
	//
	ostream &operator<<(ostream &os, const DinoUmlDiagramGraph &diagramGraph)
	{
		// Header with diagram name and type
		os << "\n--- " << diagramGraph.getDiagramTypeString() 
		   << " \"" << diagramGraph.m_diagramName << "\" ---\n" << endl;

		// Nodes

		// Initialize iterators
		SListConstIterator<NodeElement*> nodeIt = diagramGraph.m_containedNodes.begin();
		SListConstIterator<double> xIt = diagramGraph.m_x.begin();
		SListConstIterator<double> yIt = diagramGraph.m_y.begin();
		SListConstIterator<double> wIt = diagramGraph.m_w.begin();
		SListConstIterator<double> hIt = diagramGraph.m_h.begin();

		// Traverse lists
		while (nodeIt.valid()){

			os << "Node " << diagramGraph.m_modelGraph.getNodeLabel(*nodeIt) 
			   << " with geometry ("
			   << *xIt << ", "
			   << *yIt << ", "
			   << *wIt << ", "
			   << *hIt << ")." << endl;
		
			++nodeIt;
			++xIt;
			++yIt;
			++wIt;
			++hIt;

		} // while

		// Edges

		// Traverse lists
		SListConstIterator<EdgeElement*> edgeIt = diagramGraph.m_containedEdges.begin();
		for (edgeIt = diagramGraph.m_containedEdges.begin();
			 edgeIt.valid();
			 ++edgeIt)
		{
			os << "Edge between " 
			   << diagramGraph.m_modelGraph.getNodeLabel((*edgeIt)->source()) 
			   << " and "
			   << diagramGraph.m_modelGraph.getNodeLabel((*edgeIt)->target())
			   << endl;
		}

		return os;

	} // <<
开发者ID:boddulavineela,项目名称:ICSE-2011-ViewInfinity,代码行数:54,代码来源:DinoUmlDiagramGraph.cpp

示例4: undoGenMergers

void UMLGraph::undoGenMergers()
{
	SListConstIterator<edge> it;
	for(it = m_mergeEdges.begin(); it.valid(); ++it)
	{
		edge eMerge = *it;
		node u = eMerge->source();
		const DPolyline &common = bends(eMerge);

		adjEntry adj, adjSucc;
		for(adj = u->firstAdj(); adj != nullptr; adj = adjSucc) {
			adjSucc = adj->succ();

			edge e = adj->theEdge();
			if(e->target() != u) continue;

			DPolyline &dpl = bends(e);
			dpl.pushBack(DPoint(x(u),y(u)));

			ListConstIterator<DPoint> itDp;
			for(itDp = common.begin(); itDp.valid(); ++itDp)
				dpl.pushBack(*itDp);

			m_pG->moveTarget(e,eMerge->target());
		}

		m_pG->delNode(u);
	}

	m_mergeEdges.clear();
}
开发者ID:marvin2k,项目名称:ogdf,代码行数:31,代码来源:UMLGraph.cpp

示例5: computeCoords

// computes coordinates pos of horizontal (resp. vertical) segments by
// computing longest paths in the constraint graph D
void LongestPathCompaction::computeCoords(
	const CompactionConstraintGraph<int> &D,
	NodeArray<int> &pos)
{
	const Graph &Gd = D.getGraph();

	// compute a first ranking with usual longest paths
	applyLongestPaths(D,pos);


	if (m_tighten == true)
	{
		// improve cost of ranking by moving pseudo-components
		moveComponents(D,pos);


		// find node with minimal position
		SListConstIterator<node> it = m_pseudoSources.begin();
		int min = pos[*it];
		for(++it; it.valid(); ++it) {
			if (pos[*it] < min)
				min = pos[*it];
		}

		// move all nodes such that node with minimum position has position 0
		for(node v : Gd.nodes)
			pos[v] -= min;
	}

	// free resources
	m_pseudoSources.clear();
	m_component.init();
}
开发者ID:lncosie,项目名称:ogdf,代码行数:35,代码来源:LongestPathCompaction.cpp

示例6: doInit

void FaceSinkGraph::doInit()
{
	const ConstCombinatorialEmbedding &E = *m_pE;

	NodeArray<node> sinkSwitch(E,0); // corresponding node in F (if any)
	NodeArray<bool> isSinkSwitch(E,true);

	face f;
	forall_faces(f,E)
	{
		node faceNode = newNode();
		m_originalFace[faceNode] = f;

		SListPure<node> nodesInF;

		adjEntry adj1 = f->firstAdj(), adj = adj1;
		do {
			node v = adj->theNode();
			nodesInF.pushBack(v);

			if (v == m_source)
				m_containsSource[faceNode] = true;

			isSinkSwitch[adj->theEdge()->source()] = false;

			adj = adj->twin()->cyclicPred();
		} while (adj != adj1);

		SListConstIterator<node> it;
		for(it = nodesInF.begin(); it.valid(); ++it)
		{
			node v = *it;
			if(isSinkSwitch[v])	{
				if (sinkSwitch[v] == 0) {
					node vF = newNode();
					m_originalNode[vF] = v;
					sinkSwitch[v] = vF;
				}

				newEdge(faceNode,sinkSwitch[v]);
			}
		}

		for(it = nodesInF.begin(); it.valid(); ++it)
			isSinkSwitch[*it] = true;
	}
开发者ID:boddulavineela,项目名称:ICSE-2011-ViewInfinity,代码行数:46,代码来源:FaceSinkGraph.cpp

示例7: insertEdgePath

void BCandSPQRtrees::insertEdgePath (edge eOrig, const SList<adjEntry>& crossedEdges)
{
    SList<edge> ti;
    SList<node> tj;
    SListConstIterator<adjEntry> kt;
    for (kt=crossedEdges.begin(); kt.valid(); ++kt) {
        ti.pushBack((*kt)->theEdge());
        tj.pushBack((*kt)->theEdge()->target());
    }

    m_pPG->insertEdgePath(eOrig,crossedEdges);

    Graph::EdgeType typeOfEOrig = m_forbidCrossingGens ? m_pPG->typeOrig(eOrig) : Graph::association;
    int costOfEOrig = m_costOrig ? eOrig ? (*m_costOrig)[eOrig] : 0 : 1;

    node v = m_pPG->copy(eOrig->source());
    SListConstIterator<edge> it = ti.begin();
    SListConstIterator<node> jt = tj.begin();
    for (kt=crossedEdges.begin(); it.valid(); ++it, ++jt, ++kt) {
        edge e = *it;
        node u = e->target();
        adjEntry a;
        for (a=u->firstAdj(); a->theEdge()->target()!=*jt; a=a->succ());
        edge f = a->theEdge();
        m_dynamicSPQRForest.updateInsertedNode(e,f);
        e = m_dynamicSPQRForest.rep(e);
        f = m_dynamicSPQRForest.rep(f);
        m_typeOf[f] = m_typeOf[e];
        m_cost[f] = m_cost[e];
        for (a=u->firstAdj(); a->theEdge()->source()!=v; a=a->succ());
        f = a->theEdge();
        m_dynamicSPQRForest.updateInsertedEdge(f);
        f = m_dynamicSPQRForest.rep(f);
        m_typeOf[f] = typeOfEOrig;
        m_cost[f] = costOfEOrig;
        v = u;
    }
    node u = m_pPG->copy(eOrig->target());
    adjEntry a;
    for (a=v->firstAdj(); a->theEdge()->target()!=u; a=a->succ());
    edge f = a->theEdge();
    m_dynamicSPQRForest.updateInsertedEdge(f);
    f = m_dynamicSPQRForest.rep(f);
    m_typeOf[f] = typeOfEOrig;
    m_cost[f] = costOfEOrig;
}
开发者ID:kdbanman,项目名称:browseRDF,代码行数:46,代码来源:VariableEmbeddingInserter2.cpp

示例8: call

void UpwardPlanarSubgraphSimple::call(const Graph &G, List<edge> &delEdges)
{
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G);

	for(node v : G.nodes)
		mapToH[v] = H.newNode();


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	for(edge eG : G.edges)
	{
		if(visitedEdge[eG] == true)
			continue;

		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		if (UpwardPlanarity::isUpwardPlanar_singleSource(H) == false) {
			H.delEdge(eH);
			delEdges.pushBack(eG);
		}
	}

}
开发者ID:marvin2k,项目名称:ogdf,代码行数:55,代码来源:UpwardPlanarSubgraphSimple.cpp

示例9: init

// builds expansion graph of i-th biconnected component of the original graph
void ExpansionGraph::init(int i)
{
	OGDF_ASSERT(0 <= i);
	OGDF_ASSERT(i <= m_component.high());

	// remove previous component
	for(node v : nodes) {
		node vOrig = m_vOrig[v];
		if (vOrig)
			m_vCopy[vOrig] = nullptr;
	}
	clear();


	// create new component
	SListConstIterator<edge> it;
	for(it = m_component[i].begin(); it.valid(); ++it)
	{
		edge e = *it;

		edge eCopy = newEdge(getCopy(e->source()),getCopy(e->target()));
		m_eOrig[eCopy] = e;
	}

	// expand vertices
	for(node v : nodes)
	{
		if (original(v) && v->indeg() >= 1 && v->outdeg() >= 1) {
			node vPrime = newNode();
			m_vRep[vPrime] = m_vOrig[v];

			SListPure<edge> edges;
			v->outEdges(edges);

			SListConstIterator<edge> it;
			for(it = edges.begin(); it.valid(); ++it)
				moveSource(*it,vPrime);

			newEdge(v,vPrime);
		}
	}
}
开发者ID:marvin2k,项目名称:ogdf,代码行数:43,代码来源:ExpansionGraph.cpp

示例10: checkAcyclic

// test if graphAcyclicTest plus edges in tmpAugmented is acyclic
// removes added edges again
bool UpwardPlanarSubgraphSimple::checkAcyclic(
	GraphCopySimple &graphAcyclicTest,
	SList<Tuple2<node,node> > &tmpAugmented)
{
	SListPure<edge> added;

	SListConstIterator<Tuple2<node,node> > it;
	for(it = tmpAugmented.begin(); it.valid(); ++it)
		added.pushBack(graphAcyclicTest.newEdge(
			graphAcyclicTest.copy((*it).x1()),
			graphAcyclicTest.copy((*it).x2())));

	bool acyclic = isAcyclic(graphAcyclicTest);

	SListConstIterator<edge> itE;
	for(itE = added.begin(); itE.valid(); ++itE)
		graphAcyclicTest.delEdge(*itE);

	return acyclic;
}
开发者ID:marvin2k,项目名称:ogdf,代码行数:22,代码来源:UpwardPlanarSubgraphSimple.cpp

示例11: transform

// Transforms KuratowskiWrapper in KuratowskiSubdivision
void BoyerMyrvold::transform(
	const KuratowskiWrapper& source,
	KuratowskiSubdivision& target,
	NodeArray<int>& count,
	EdgeArray<int>& countEdge)
{
	// init linear counting structure
	node kn[6];
	int p = 0;
	SListConstIterator<edge> itE;
	for (itE = source.edgeList.begin(); itE.valid(); ++itE) {
		const edge& e(*itE);
		OGDF_ASSERT(!countEdge[e]);
		countEdge[e] = 1;
		if (++count[e->source()] == 3) kn[p++] = e->source();
		if (++count[e->target()] == 3) kn[p++] = e->target();
	}

	// transform edgelist of KuratowskiSubdivision to KuratowskiWrapper
	OGDF_ASSERT(p==5 || p==6);
	node n;
	edge e,f,h;
	List<edge> L;
	if (p==5) { // K5
		kn[5] = 0;
		target.init(10);
		for (int k = 0; k<5; k++) {
			forall_adj_edges(e,kn[k]) {
				if (!countEdge[e]) continue;
				n = kn[k];
				f = e;
				// traverse degree-2-path
				while (count[n = f->opposite(n)] == 2) {
					L.pushBack(f);
					forall_adj_edges(h,n) {
						if (countEdge[h] && h != f) {
							f = h;
							break;
						}
					}
				}
				L.pushBack(f);
				int i = 0;
				while (kn[i] != n) i++;
				if (i > k) {
					if (k==0) i--;
					else if (k==1) i+=2;
					else i += k+2;
					target[i].conc(L);
				} else L.clear();
			}
		}
	} else { // k33
开发者ID:mneumann,项目名称:tulip,代码行数:54,代码来源:BoyerMyrvold.cpp

示例12: call

void OptimalRanking::call (const Graph& G, NodeArray<int> &rank)
{
	List<edge> R;

	m_subgraph.get().call(G,R);

	EdgeArray<bool> reversed(G,false);
	for (edge e : R)
		reversed[e] = true;
	R.clear();

	EdgeArray<int> length(G,1);

	if(m_separateMultiEdges) {
		SListPure<edge> edges;
		EdgeArray<int> minIndex(G), maxIndex(G);
		parallelFreeSortUndirected(G, edges, minIndex, maxIndex);

		SListConstIterator<edge> it = edges.begin();
		if(it.valid())
		{
			int prevSrc = minIndex[*it];
			int prevTgt = maxIndex[*it];

			for(it = it.succ(); it.valid(); ++it) {
				edge e = *it;
				if (minIndex[e] == prevSrc && maxIndex[e] == prevTgt)
					length[e] = 2;
				else {
					prevSrc = minIndex[e];
					prevTgt = maxIndex[e];
				}
			}
		}
	}

	EdgeArray<int> cost(G,1);
	doCall(G, rank, reversed, length, cost);
}
开发者ID:lncosie,项目名称:ogdf,代码行数:39,代码来源:OptimalRanking.cpp

示例13: isParallelFree

bool isParallelFree(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return true;

    SListPure<edge> edges;
    parallelFreeSort(G,edges);

    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (ePrev->source() == e->source() && ePrev->target() == e->target())
            return false;
    }

    return true;
}
开发者ID:lncosie,项目名称:ogdf,代码行数:17,代码来源:simple_graph_alg.cpp

示例14: isParallelFreeUndirected

bool isParallelFreeUndirected(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return true;

    SListPure<edge> edges;
    EdgeArray<int> minIndex(G), maxIndex(G);
    parallelFreeSortUndirected(G,edges,minIndex,maxIndex);

    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (minIndex[ePrev] == minIndex[e] && maxIndex[ePrev] == maxIndex[e])
            return false;
    }

    return true;
}
开发者ID:lncosie,项目名称:ogdf,代码行数:18,代码来源:simple_graph_alg.cpp

示例15: numParallelEdges

int numParallelEdges(const Graph &G)
{
    if (G.numberOfEdges() <= 1) return 0;

    SListPure<edge> edges;
    parallelFreeSort(G,edges);

    int num = 0;
    SListConstIterator<edge> it = edges.begin();
    edge ePrev = *it, e;
    for(it = ++it; it.valid(); ++it, ePrev = e) {
        e = *it;
        if (ePrev->source() == e->source() && ePrev->target() == e->target())
            ++num;
    }

    return num;
}
开发者ID:lncosie,项目名称:ogdf,代码行数:18,代码来源:simple_graph_alg.cpp


注:本文中的SListConstIterator::valid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。