当前位置: 首页>>代码示例>>C++>>正文


C++ RooRealVar::getMax方法代码示例

本文整理汇总了C++中RooRealVar::getMax方法的典型用法代码示例。如果您正苦于以下问题:C++ RooRealVar::getMax方法的具体用法?C++ RooRealVar::getMax怎么用?C++ RooRealVar::getMax使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在RooRealVar的用法示例。


在下文中一共展示了RooRealVar::getMax方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: ComputeUpperLimit

void ComputeUpperLimit(RooAbsData *data, RooStats::ModelConfig *model, float &UpperLimit, float &signif, RooRealVar *mu, RooArgSet *nullParams,RooWorkspace *ws,REGION region,const char* tag) {

  bool StoreEverything=false; // activate if you want to store frames and all
  
  RooStats::ProfileLikelihoodCalculator *plc = new RooStats::ProfileLikelihoodCalculator(*data, *model);
  plc->SetParameters(*mu);
  plc->SetNullParameters(*nullParams);
  plc->SetTestSize(0.05);
  RooStats::LikelihoodInterval *interval = plc->GetInterval();

  bool ComputationSuccessful=false;
  UpperLimit = interval->UpperLimit(*mu,ComputationSuccessful);
  signif = 0.0; // plc->GetHypoTest()->Significance();   // deactivated significance (to make algorithm faster)

  if(!ComputationSuccessful) {
    cout << "There seems to have been a problem. Returned upper limit is " << UpperLimit << " but it will be set to -999" << endl;
    UpperLimit=-999;
    signif=-999;
  }

  if(StoreEverything) {
    // Store it all
    RooRealVar* minv = (RooRealVar*)model->GetObservables()->first();
    minv->setBins(static_cast<int>((minv->getMax()-minv->getMin())/5.));

    RooPlot* frameEE = minv->frame(RooFit::Title("ee sample"));
    frameEE->GetXaxis()->CenterTitle(1);
    frameEE->GetYaxis()->CenterTitle(1);
    
    RooPlot* frameMM = minv->frame(RooFit::Title("mm sample"));
    frameMM->GetXaxis()->CenterTitle(1);
    frameMM->GetYaxis()->CenterTitle(1);
    
    RooPlot* frameOF = minv->frame(RooFit::Title("OF sample"));
    frameOF->GetXaxis()->CenterTitle(1);
    frameOF->GetYaxis()->CenterTitle(1);
    
    data->plotOn(frameMM,RooFit::Cut("catCentral==catCentral::MMCentral"));
    model->GetPdf()->plotOn(frameMM,RooFit::Slice(*ws->cat("catCentral"), "MMCentral"),RooFit::ProjWData(*data));
    
    data->plotOn(frameEE,RooFit::Cut("catCentral==catCentral::EECentral"));
    model->GetPdf()->plotOn(frameEE,RooFit::Slice(*ws->cat("catCentral"), "EECentral"),RooFit::ProjWData(*data));
    
    data->plotOn(frameOF,RooFit::Cut("catCentral==catCentral::OFOSCentral"));
    model->GetPdf()->plotOn(frameOF,RooFit::Slice(*ws->cat("catCentral"), "OFOSCentral"),RooFit::ProjWData(*data));
    
    TFile *fout = new TFile("fout.root","UPDATE");
    frameMM->Write(Concatenate(Concatenate(data->GetName(),"_MM"),tag),TObject::kOverwrite);
    frameEE->Write(Concatenate(Concatenate(data->GetName(),"_EE"),tag),TObject::kOverwrite);
    frameOF->Write(Concatenate(Concatenate(data->GetName(),"_OF"),tag),TObject::kOverwrite);
    fout->Close();
  }

  delete plc;
  plc=0;
}
开发者ID:MarcoAndreaBuchmann,项目名称:CBAF,代码行数:56,代码来源:Separate_expectedLimits.cpp

示例2: adjustBinning

void THSEventsPDF::adjustBinning(Int_t* offset1) const
{
   RooRealVar* xvar = fx_off ;
  if (!dynamic_cast<RooRealVar*>(xvar)) {
    coutE(InputArguments) << "RooDataHist::adjustBinning(" << GetName() << ") ERROR: dimension " << xvar->GetName() << " must be real" << endl ;
    assert(0) ;
  }
  Double_t xlo = xvar->getMin() ;
  Double_t xhi = xvar->getMax() ;
  //adjust bin range limits with new scale parameter
  //cout<<scale<<" "<<fMean<<" "<<xlo<<" "<<xhi<<endl;
  xlo=(xlo-fMean)/scale+fMean;
  xhi=(xhi-fMean)/scale+fMean;
  if(xvar->getBinning().lowBound()==xlo&&xvar->getBinning().highBound()==xhi) return;
  xvar->setRange(xlo,xhi) ;
  // Int_t xmin(0) ;
  // cout<<"THSEventsPDF::adjustBinning( "<<xlo <<" "<<xhi<<endl;
  //now adjust fitting range to bin limits??Possibly not
  if (fRHist->GetXaxis()->GetXbins()->GetArray()) {

    RooBinning xbins(fRHist->GetNbinsX(),fRHist->GetXaxis()->GetXbins()->GetArray()) ;

    Double_t tolerance = 1e-6*xbins.averageBinWidth() ;
    
    // Adjust xlo/xhi to nearest boundary
    Double_t xloAdj = xbins.binLow(xbins.binNumber(xlo+tolerance)) ;
    Double_t xhiAdj = xbins.binHigh(xbins.binNumber(xhi-tolerance)) ;
    xbins.setRange(xloAdj,xhiAdj) ;

    xvar->setBinning(xbins) ;
    if (fabs(xloAdj-xlo)>tolerance||fabs(xhiAdj-xhi)<tolerance) {
      coutI(DataHandling) << "RooDataHist::adjustBinning(" << GetName() << "): fit range of variable " << xvar->GetName() << " expanded to nearest bin boundaries: [" 
			  << xlo << "," << xhi << "] --> [" << xloAdj << "," << xhiAdj << "]" << endl ;
    }


  } else {

    RooBinning xbins(fRHist->GetXaxis()->GetXmin(),fRHist->GetXaxis()->GetXmax()) ;
    xbins.addUniform(fRHist->GetNbinsX(),fRHist->GetXaxis()->GetXmin(),fRHist->GetXaxis()->GetXmax()) ;

    Double_t tolerance = 1e-6*xbins.averageBinWidth() ;

    // Adjust xlo/xhi to nearest boundary
    Double_t xloAdj = xbins.binLow(xbins.binNumber(xlo+tolerance)) ;
    Double_t xhiAdj = xbins.binHigh(xbins.binNumber(xhi-tolerance)) ;
    xbins.setRange(xloAdj,xhiAdj) ;
    xvar->setRange(xloAdj,xhiAdj) ;
    //xvar->setRange(xlo,xhi) ;
 
  }
  return;
}
开发者ID:der-eric,项目名称:Events,代码行数:53,代码来源:THSEventsPDF.C

示例3: getChisq

double getChisq(RooAbsData &dat, RooAbsPdf &pdf, RooRealVar &var, bool prt=false) {

    // Find total number of events
    double nEvt;
    double nTot=0.0;

    for(int j=0; j<dat.numEntries(); j++) {
        dat.get(j);
        nEvt=dat.weight();
        nTot+=nEvt;
    }

    // Find chi-squared equivalent 2NLL
    //RooRealVar *var=(RooRealVar*)(pdf.getParameters(*dat)->find("CMS_hgg_mass"));
    double totNLL=0.0;
    double prbSum=0.0;

    for(int j=0; j<dat.numEntries(); j++) {
        double m=dat.get(j)->getRealValue(var.GetName());
        if ( m < var.getMin() || m > var.getMax())  continue;
        // Find probability density and hence probability
        var.setVal(m);
        double prb = var.getBinWidth(0)*pdf.getVal(var);
        prbSum+=prb;

        dat.get(j);
        nEvt=dat.weight();

        double mubin=nTot*prb;
        double contrib(0.);
        if (nEvt < 1) contrib = mubin;
        else contrib=mubin-nEvt+nEvt*log(nEvt/mubin);
        totNLL+=contrib;

        if(prt) cout << "Bin " << j << " prob = " << prb << " nEvt = " << nEvt << ", mu = " << mubin << " contribution " << contrib << endl;
    }

    totNLL*=2.0;
    if(prt) cout << pdf.GetName() << " nTot = " << nTot << " 2NLL constant = " << totNLL << endl;

    return totNLL;
}
开发者ID:nucleosynthesis,项目名称:EnvelopePaper,代码行数:42,代码来源:getChisq.C

示例4: createWorkspace


//.........这里部分代码省略.........

        		for(int iRAP = 1; iRAP < nRAP+1; iRAP++){
        			for(int iPT = 1; iPT < nPT+1; iPT++){
        				for(int iL = 1; iL < nL+1; iL++){

        					Double_t ptMin = bordersPT[iPT-1];;
        					Double_t ptMax = bordersPT[iPT];;
        					Double_t rapMin = bordersRAP[iRAP-1];;
        					Double_t rapMax = bordersRAP[iRAP];  ;
        					Double_t lMin = bordersL[iL-1];;
        					Double_t lMax = bordersL[iL];  ;

        					if(pt_jpsi>ptMin && pt_jpsi<ptMax && TMath::Abs(y_jpsi)>rapMin && TMath::Abs(y_jpsi)<rapMax && lifetime>lMin && lifetime<lMax){
        						iRAPindex=iRAP;
        						iPTindex=iPT;
        						iLindex=iL;
        					}

        				}

        			}
        		}

        		double lifetimeErrRand = h_ctauerr_2011[iRAPindex][iPTindex][iLindex]->GetRandom();

        		lifetimeErr = lifetimeErrRand;
        		if (ientries%10000==0){
        			std::cout << "Test output: lifetimeErr " << lifetimeErr << " randomly drawn from from " << h_ctauerr_2011[iRAPindex][iPTindex][iLindex]->GetName() <<  std::endl;
        		}

        */

        if (
            M > chicMass->getMin() && M < chicMass->getMax()
            && pt > chicPt->getMin() && pt < chicPt->getMax()
            && y > chicRap->getMin() && y < chicRap->getMax()
            && M_jpsi > JpsiMass->getMin() && M_jpsi < JpsiMass->getMax()
            && pt_jpsi > JpsiPt->getMin() && pt_jpsi < JpsiPt->getMax()
            && y_jpsi > JpsiRap->getMin() && y_jpsi < JpsiRap->getMax()
            && lifetime > Jpsict->getMin() && lifetime < Jpsict->getMax()
            && lifetimeErr > JpsictErr->getMin() && lifetimeErr < JpsictErr->getMax()
        ) {

            chicPt      ->setVal(pt);
            chicRap     ->setVal(y);
            chicMass    ->setVal(M);
            JpsiMass    ->setVal(M_jpsi);
            JpsiPt    	->setVal(pt_jpsi);
            JpsiRap     ->setVal(y_jpsi);
            Jpsict      ->setVal(lifetime);
            JpsictErr   ->setVal(lifetimeErr);

            //cout<<"JpsiRap->getVal() "<<JpsiRap->getVal()<<endl;

            fullData->add(dataVars);
            numEntriesInAnalysis++;
        }
        else {
            numEntriesNotInAnalysis++;
            //if (M < chicMass->getMin() || M > chicMass->getMax()) cout << "M " << M << endl;
            //if (pt < chicPt->getMin() || pt > chicPt->getMax()) cout << "pt " << pt << endl;
            //if (y < chicRap->getMin() || y > chicRap->getMax()) cout << "y " << y << endl;
            //if (lifetime < Jpsict->getMin() || lifetime > Jpsict->getMax()) cout << "lifetime " << lifetime << endl;
            //if (lifetimeErr < JpsictErr->getMin() || lifetimeErr > JpsictErr->getMax()) cout << "lifetimeErr " << lifetimeErr << endl;
            //cout << "M " << M << endl;
            //cout << "pt " << pt << endl;
开发者ID:knuenz,项目名称:ChicPol,代码行数:67,代码来源:createWorkspace.C

示例5: slrts


//.........这里部分代码省略.........
   RatioOfProfiledLikelihoodsTestStat 
      ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot());
   ropl.SetSubtractMLE(false);
   
   //MyProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   if (testStatType == 3) profll.SetOneSided(1);
   if (optimize) profll.SetReuseNLL(true);

   TestStatistic * testStat = &slrts;
   if (testStatType == 1) testStat = &ropl;
   if (testStatType == 2 || testStatType == 3) testStat = &profll;
  
   
   HypoTestCalculatorGeneric *  hc = 0;
   if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel);
   else hc = new HybridCalculator(*data, *bModel, *sbModel);

   ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
   //=== DEBUG
   ///// toymcs->SetWS( w ) ;
   //=== DEBUG
   toymcs->SetNEventsPerToy(1);
   toymcs->SetTestStatistic(testStat);
   if (optimize) toymcs->SetUseMultiGen(true);


   if (type == 1) { 
      HybridCalculator *hhc = (HybridCalculator*) hc;
      hhc->SetToys(ntoys,ntoys); 

      // check for nuisance prior pdf 
      if (bModel->GetPriorPdf() && sbModel->GetPriorPdf() ) {
         hhc->ForcePriorNuisanceAlt(*bModel->GetPriorPdf());
         hhc->ForcePriorNuisanceNull(*sbModel->GetPriorPdf());
      }
      else {
         if (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() ) {
            Error("RA2bHypoTestInvDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified");
            return 0;
         }
      }
   } 
   else 
      ((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys); 

   // Get the result
   RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);


   TStopwatch tw; tw.Start(); 
   const RooArgSet * poiSet = sbModel->GetParametersOfInterest();
   RooRealVar *poi = (RooRealVar*)poiSet->first();

   // fit the data first
   sbModel->GetPdf()->fitTo(*data);
   double poihat  = poi->getVal();


   HypoTestInverter calc(*hc);
   calc.SetConfidenceLevel(0.95);

   calc.UseCLs(useCls);
   calc.SetVerbose(true);

   // can speed up using proof-lite
   if (useProof && nworkers > 1) { 
      ProofConfig pc(*w, nworkers, "", kFALSE);
      toymcs->SetProofConfig(&pc);    // enable proof
   }


   printf(" npoints = %d, poimin = %7.2f, poimax = %7.2f\n\n", npoints, poimin, poimax ) ;
   cout << flush ;

   if ( npoints==1 ) {

      std::cout << "Evaluating one point : " << poimax << std::endl;
      calc.RunOnePoint(poimax);

   } else if (npoints > 0) {
      if (poimin >= poimax) { 
         // if no min/max given scan between MLE and +4 sigma 
         poimin = int(poihat);
         poimax = int(poihat +  4 * poi->getError());
      }
      std::cout << "Doing a fixed scan  in interval : " << poimin << " , " << poimax << std::endl;
      calc.SetFixedScan(npoints,poimin,poimax);
   }
   else { 
      //poi->setMax(10*int( (poihat+ 10 *poi->getError() )/10 ) );
      std::cout << "Doing an  automatic scan  in interval : " << poi->getMin() << " , " << poi->getMax() << std::endl;
   }

   cout << "\n\n right before calc.GetInterval(), ntoys = " << ntoys << " \n\n" << flush ;
   HypoTestInverterResult * r = calc.GetInterval();


   return r; 
}
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:101,代码来源:RA2bHypoTestInvDemo.c

示例6: OneSidedFrequentistUpperLimitWithBands_intermediate


//.........这里部分代码省略.........
  ProofConfig pc(*w, 4, "",false); 
  if(mc->GetGlobalObservables()){
    cout << "will use global observables for unconditional ensemble"<<endl;
    mc->GetGlobalObservables()->Print();
    toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
  }
  toymcsampler->SetProofConfig(&pc);	// enable proof


  // Now get the interval
  PointSetInterval* interval = fc.GetInterval();
  ConfidenceBelt* belt = fc.GetConfidenceBelt();
 
  // print out the iterval on the first Parameter of Interest
  cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
    interval->LowerLimit(*firstPOI) << ", "<<
    interval->UpperLimit(*firstPOI) <<"] "<<endl;

  // get observed UL and value of test statistic evaluated there
  RooArgSet tmpPOI(*firstPOI);
  double observedUL = interval->UpperLimit(*firstPOI);
  firstPOI->setVal(observedUL);
  double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);


  // Ask the calculator which points were scanned
  RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
  RooArgSet* tmpPoint;

  // make a histogram of parameter vs. threshold
  TH1F* histOfThresholds = new TH1F("histOfThresholds","",
				    parameterScan->numEntries(),
				    firstPOI->getMin(),
				    firstPOI->getMax());
  histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName());
  histOfThresholds->GetYaxis()->SetTitle("Threshold");

  // loop through the points that were tested and ask confidence belt
  // what the upper/lower thresholds were.
  // For FeldmanCousins, the lower cut off is always 0
  for(Int_t i=0; i<parameterScan->numEntries(); ++i){
    tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
    double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
    double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ;
    histOfThresholds->Fill(poiVal,arMax);
  }
  TCanvas* c1 = new TCanvas();
  c1->Divide(2);
  c1->cd(1);
  histOfThresholds->SetMinimum(0);
  histOfThresholds->Draw();
  c1->cd(2);

  /////////////////////////////////////////////////////////////
  // Now we generate the expected bands and power-constriant
  ////////////////////////////////////////////////////////////

  // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters
  RooAbsReal* nll = mc->GetPdf()->createNLL(*data);
  RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest());
  firstPOI->setVal(0.);
  profile->getVal(); // this will do fit and set nuisance parameters to profiled values
  RooArgSet* poiAndNuisance = new RooArgSet();
  if(mc->GetNuisanceParameters())
    poiAndNuisance->add(*mc->GetNuisanceParameters());
  poiAndNuisance->add(*mc->GetParametersOfInterest());
开发者ID:gerbaudo,项目名称:hlfv-fitmodel,代码行数:67,代码来源:OneSidedFrequentistUpperLimitWithBands_intermediate.C

示例7: fitPtOverMCJLST


//.........这里部分代码省略.........
    sprintf(fileToSave,"bb%s",changeParName.c_str());  bb.SetName(fileToSave);
    sprintf(fileToSave,"bb2%s",changeParName.c_str());  bb2.SetName(fileToSave);
    sprintf(fileToSave,"fexp%s",changeParName.c_str());  fexp.SetName(fileToSave);
    sprintf(fileToSave,"T%s",changeParName.c_str());  T.SetName(fileToSave);
  }
  (RooArgSet(m,n,n2,bb,bb2,fexp,T)).writeToStream(os1,false);
  os1.close();

  RooRealVar mup("mup","emme", 1.,0.01, 30.);
  RooRealVar nup("nup","enne", 0.93, 0.5, 15.);
  RooRealVar n2up("n2up","enne2", 0.75, 0.5, 15.);
  RooRealVar bbup("bbup","bibi",0.02, 0.00005, 20.0);
  RooRealVar Tup("Tup","tti",0.2,0.00000005,1.);
  RooRealVar bb2up("bb2up","bibi2",0.02, 0.0005, 10.0);
  RooRealVar fexpup("fexpup","f_exp",0.02, 0.0, 1.0);
 
  RooModifTsallis* rt3up = new RooModifTsallis("rt3up","rt3up",*ptoverm,mup,nup,n2up,bbup,bb2up,Tup,fexpup);
  // ws->import(*rt3up);
 
  RooRealVar mdown("mdown","emme", 1.,0.01, 30.);
  RooRealVar ndown("ndown","enne", 0.93, 0.5, 15.);
  RooRealVar n2down("n2down","enne2", 0.75, 0.5, 15.);
  RooRealVar bbdown("bbdown","bibi",0.02, 0.00005, 20.0);
  RooRealVar Tdown("Tdown","tti",0.2,0.00000005,1.);
  RooRealVar bb2down("bb2down","bibi2",0.02, 0.0005, 10.0);
  RooRealVar fexpdown("fexpdown","f_exp",0.02, 0.0, 1.0);

  RooModifTsallis* rt3down = new RooModifTsallis("rt3down","rt3down",*ptoverm,mdown,ndown,n2down,bbdown,bb2down,Tdown,fexpdown);
  // ws->import(*rt3down);

  RooPlot *frame = ptoverm->frame();

  char reducestr[300];
  sprintf(reducestr,"ptoverm > %f && ptoverm < %f",ptoverm->getMin(),ptoverm->getMax());
  
  rdh->plotOn(frame,DataError(RooAbsData::SumW2),Cut(reducestr));
  static RooHist *hpull;
  float chi2 = 0.;

  if (changeParName == "") {
    sprintf(fileToSave,"text/paramsPTOverMCJLST_%s%d_%dTeV_Default.txt",nameSample[whichtype].c_str(),mass,LHCsqrts);
    ifstream is1(fileToSave);
    (RooArgSet(mup,nup,n2up,bbup,bb2up,fexpup,Tup)).readFromStream(is1,false);

    mdown.setVal(fabs(3*mup.getVal() - 2*m.getVal()));
    ndown.setVal(fabs(3*nup.getVal() - 2*n.getVal()));
    n2down.setVal(fabs(3*n2up.getVal() - 2*n2.getVal()));
    bbdown.setVal(fabs(3*bbup.getVal() - 2*bb.getVal()));
    Tdown.setVal(fabs(3*Tup.getVal() - 2*T.getVal()));
    bb2down.setVal(fabs(3*bb2up.getVal() - 2*bb2.getVal()));
    fexpdown.setVal(fabs(3*fexpup.getVal() - 2*fexp.getVal()));

    if (showErrorPDFs) {
      rt3->plotOn(frame,LineColor(kRed),LineStyle(kDashed),Normalization(rdh->sumEntries(),RooAbsReal::NumEvent));
      hpull = frame->pullHist();
      rt3up->plotOn(frame,LineColor(kBlue),Normalization(rdh->sumEntries(),RooAbsReal::NumEvent));
      if (systString.find("Mela") == string::npos) rt3down->plotOn(frame,LineColor(kRed),LineStyle(kDashed),Normalization(rdh->sumEntries(),RooAbsReal::NumEvent));
    } else {
      rt3->plotOn(frame,LineColor(kBlue),Normalization(rdh->sumEntries(),RooAbsReal::NumEvent));
      hpull = frame->pullHist();
    }
  } else {
    mup.setVal(m.getVal() + m.getError());   cout << "mup = " << mup.getVal() << endl;
    nup.setVal(n.getVal() + n.getError());
    n2up.setVal(n2.getVal() + n2.getError());
    bbup.setVal(bb.getVal() + bb.getError());
开发者ID:HZZ4l,项目名称:CombinationPy,代码行数:67,代码来源:fitPtOverMCJLST.C

示例8: slrts


//.........这里部分代码省略.........
               nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel");
         }   
         if (!nuisPdf ) {
            if (bModel->GetPriorPdf())  { 
               nuisPdf = bModel->GetPriorPdf();
               Info("StandardHypoTestInvDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName());            
            }
            else { 
               Error("StandardHypoTestInvDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
               return 0;
            }
         }
         assert(nuisPdf);
         Info("StandardHypoTestInvDemo","Using as nuisance Pdf ... " );
         nuisPdf->Print();
      
         const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
         RooArgSet * np = nuisPdf->getObservables(*nuisParams);
         if (np->getSize() == 0) { 
            Warning("StandardHypoTestInvDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
         }
         delete np;
      
         hhc->ForcePriorNuisanceAlt(*nuisPdf);
         hhc->ForcePriorNuisanceNull(*nuisPdf);
      
      
      }
   } 
   else if (type == 2 || type == 3) { 
      if (testStatType == 3) ((AsymptoticCalculator*) hc)->SetOneSided(true);  
      if (testStatType != 2 && testStatType != 3)  
         Warning("StandardHypoTestInvDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
   }
   else if (type == 0 || type == 1) 
      ((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys/mNToysRatio); 

  
   // Get the result
   RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);
  
  
  
   HypoTestInverter calc(*hc);
   calc.SetConfidenceLevel(0.95);
  
  
   calc.UseCLs(useCLs);
   calc.SetVerbose(true);
  
   // can speed up using proof-lite
   if (mUseProof && mNWorkers > 1) { 
      ProofConfig pc(*w, mNWorkers, "", kFALSE);
      toymcs->SetProofConfig(&pc);    // enable proof
   }
  
  
   if (npoints > 0) {
      if (poimin > poimax) { 
         // if no min/max given scan between MLE and +4 sigma 
         poimin = int(poihat);
         poimax = int(poihat +  4 * poi->getError());
      }
      std::cout << "Doing a fixed scan  in interval : " << poimin << " , " << poimax << std::endl;
      calc.SetFixedScan(npoints,poimin,poimax);
   }
   else { 
      //poi->setMax(10*int( (poihat+ 10 *poi->getError() )/10 ) );
      std::cout << "Doing an  automatic scan  in interval : " << poi->getMin() << " , " << poi->getMax() << std::endl;
   }
  
   tw.Start();
   HypoTestInverterResult * r = calc.GetInterval();
   std::cout << "Time to perform limit scan \n";
   tw.Print();
  
   if (mRebuild) {
      calc.SetCloseProof(1);
      tw.Start();
      SamplingDistribution * limDist = calc.GetUpperLimitDistribution(true,mNToyToRebuild);
      std::cout << "Time to rebuild distributions " << std::endl;
      tw.Print();
    
      if (limDist) { 
         std::cout << "expected up limit " << limDist->InverseCDF(0.5) << " +/- " 
                   << limDist->InverseCDF(0.16) << "  " 
                   << limDist->InverseCDF(0.84) << "\n"; 
      
         //update r to a new updated result object containing the rebuilt expected p-values distributions
         // (it will not recompute the expected limit)
         if (r) delete r;  // need to delete previous object since GetInterval will return a cloned copy
         r = calc.GetInterval();
      
      }
      else 
         std::cout << "ERROR : failed to re-build distributions " << std::endl; 
   }
  
   return r;
}
开发者ID:SusyRa2b,项目名称:Statistics,代码行数:101,代码来源:StandardHypoTestInvDemo.C

示例9: DiagnosisMacro


//.........这里部分代码省略.........
    // Construct unbinned likelihood
    RooAbsReal* nll = model->createNLL(*data, NumCPU(CPUused));
    // Minimize likelihood w.r.t all parameters before making plots
    RooMinuit(*nll).migrad();


    //////////////////////////////////////////////////////

    ///////////////////   L O O P   O V E R   P A R A M E T E R S

    /////////////////////////////////////////////////////

    /// Set up loop over parameters
    TString ParamName;
    double ParamValue;
    double ParamError;
    double ParamLimitLow;
    double ParamLimitHigh;
    double FitRangeLow;
    double FitRangeHigh;
    RooRealVar* vParam;
    int counter = 0;

    // Loop start
    TIterator* iter = paramSet2->createIterator();
    TObject* var = iter->Next();
    while (var != 0) {
        counter++;
        ParamName = var->GetName();
        vParam = w->var(ParamName);
        ParamValue = vParam->getVal();
        ParamError = vParam->getError();
        ParamLimitLow = vParam->getMin();
        ParamLimitHigh = vParam->getMax();
        cout << ParamName << " has value " << ParamValue << " with error: " << ParamError << " and limits: " << ParamLimitLow << " to " << ParamLimitHigh << endl << endl;

        if (ParamError == 0) {  //Skipping fixed parameters
            cout << "Parameter was fixed, skipping its fitting" << endl;
            cout << endl << "DONE WITH " << counter << " PARAMETER OUT OF " << Nparams << endl << endl;
            var = iter->Next();
            continue;
        }

        // determining fit range: Nsigma sigma on each side unless it would be outside of parameter limits
        if ((ParamValue - Nsigma * ParamError) > ParamLimitLow) {
            FitRangeLow = (ParamValue - Nsigma * ParamError);
        }
        else {
            FitRangeLow = ParamLimitLow;
        }

        if ((ParamValue + Nsigma * ParamError) < ParamLimitHigh) {
            FitRangeHigh = (ParamValue + Nsigma * ParamError);
        }
        else {
            FitRangeHigh = ParamLimitHigh;
        }


        // P l o t    p l a i n   l i k e l i h o o d   a n d   C o n s t r u c t   p r o f i l e   l i k e l i h o o d
        // ---------------------------------------------------
        RooPlot* frame1;
        RooAbsReal* pll=NULL;

        if (Nbins != 0) {
            frame1 = vParam->frame(Bins(Nbins), Range(FitRangeLow, FitRangeHigh), Title(TString::Format("LL and profileLL in %s", ParamName.Data())));
开发者ID:CMS-HIN-dilepton,项目名称:DimuonCADIs,代码行数:67,代码来源:DiagnosisMacro.C

示例10: test_counting_experiment


//.........这里部分代码省略.........
  ModelConfig * sbModel = (ModelConfig*) mc.Clone();
  sbModel->SetName("S+B Model");      
  RooRealVar* poi = (RooRealVar*) sbModel->GetParametersOfInterest()->first();
  poi->setVal(1);  // set POI snapshot in S+B model for expected significance
  sbModel->SetSnapshot(*poi);
  ModelConfig * bModel = (ModelConfig*) mc.Clone();
  bModel->SetName("B Model");      
  RooRealVar* poi2 = (RooRealVar*) bModel->GetParametersOfInterest()->first();
  poi2->setVal(0);
  bModel->SetSnapshot( *poi2  );

//------------------Limit calculation for N_th event expected = 10


	  AsymptoticCalculator  ac(data, *bModel, *sbModel);
	  //ac.SetOneSidedDiscovery(true);  // for one-side discovery test
//	  ac.SetOneSided(true);  // for one-side tests (limits)
	    ac.SetQTilde(true);
	  ac.SetPrintLevel(2);  // to suppress print level 


	// create hypotest inverter 
	  // passing the desired calculator 
	  HypoTestInverter *calc = new HypoTestInverter(ac);    // for asymptotic 
	  //HypoTestInverter calc(fc);  // for frequentist

	  calc->SetConfidenceLevel(0.90);
	  //calc->UseCLs(false);
	  calc->UseCLs(true);
	  int npoints = 500;  // number of points to scan
	  //int npoints = 1000;  // number of points to scan default 1000
	  // min and max (better to choose smaller intervals)
	  double poimin = poi->getMin();
	  double poimax = poi->getMax();
	  //poimin = 0; poimax=10;

	  std::cout << "Doing a fixed scan  in interval : " << poimin << " , " << poimax << std::endl;
	  calc->SetFixedScan(npoints,poimin,poimax);
 	  calc->SetVerbose(2); 
	  HypoTestInverterResult * r = calc->GetInterval();

	  double upperLimit = r->UpperLimit();

	  std::cout << "The computed Expected upper limit is: " <<  r->GetExpectedUpperLimit(0) << std::endl;

//------------ Getting the interval as function of m --------------//
/*   ifstream in;
   in.open("integral_mass.dat");
   

  vector <double> masses_v;
  vector <double> observed_v;
  vector <double> expected_v;
  vector <double> expected_gaud_v;
  vector <double> expected_S1_up_v;
  vector <double> expected_S1_dw_v;
  vector <double> expected_S2_up_v;
  vector <double> expected_S2_dw_v;

  double mass_itr =0.;
  double Nev_exp_th_itr =0.;
  double xsec_modifier = 10.;
  double N_tot_theory = w.var("N_tot_theory")->getValV();

  while(mass_itr <1000.){
	in >> mass_itr;
开发者ID:panManfredini,项目名称:RooStatLikelihood,代码行数:67,代码来源:many_bin_asymmetryFree_inelastic_cheat.C

示例11: progressBar

///
/// Perform the 1d Prob scan.
/// Saves chi2 values and the prob-Scan p-values in a root tree
/// For the datasets stuff, we do not yet have a MethodDatasetsProbScan class, so we do it all in
/// MethodDatasetsProbScan
/// \param nRun Part of the root tree file name to facilitate parallel production.
///
int MethodDatasetsProbScan::scan1d(bool fast, bool reverse)
{
	if (fast) return 0; // tmp

	if ( arg->debug ) cout << "MethodDatasetsProbScan::scan1d() : starting ... " << endl;

    // Set limit to all parameters.
    this->loadParameterLimits(); /// Default is "free", if not changed by cmd-line parameter


    // Define scan parameter and scan range.
    RooRealVar *parameterToScan = w->var(scanVar1);
    float parameterToScan_min = hCL->GetXaxis()->GetXmin();
    float parameterToScan_max = hCL->GetXaxis()->GetXmax();

		// do a free fit
		RooFitResult *result = this->loadAndFit(this->pdf); // fit on data
		assert(result);
    RooSlimFitResult *slimresult = new RooSlimFitResult(result,true);
		slimresult->setConfirmed(true);
		solutions.push_back(slimresult);
		double freeDataFitValue = w->var(scanVar1)->getVal();

    // Define outputfile
    system("mkdir -p root");
    TString probResName = Form("root/scan1dDatasetsProb_" + this->pdf->getName() + "_%ip" + "_" + scanVar1 + ".root", arg->npoints1d);
    TFile* outputFile = new TFile(probResName, "RECREATE");

    // Set up toy root tree
    this->probScanTree = new ToyTree(this->pdf, arg);
    this->probScanTree->init();
    this->probScanTree->nrun = -999; //\todo: why does this branch even exist in the output tree of the prob scan?

    // Save parameter values that were active at function
    // call. We'll reset them at the end to be transparent
    // to the outside.
    RooDataSet* parsFunctionCall = new RooDataSet("parsFunctionCall", "parsFunctionCall", *w->set(pdf->getParName()));
    parsFunctionCall->add(*w->set(pdf->getParName()));

    // start scan
    cout << "MethodDatasetsProbScan::scan1d_prob() : starting ... with " << nPoints1d << " scanpoints..." << endl;
    ProgressBar progressBar(arg, nPoints1d);
    for ( int i = 0; i < nPoints1d; i++ )
    {
        progressBar.progress();
        // scanpoint is calculated using min, max, which are the hCL x-Axis limits set in this->initScan()
        // this uses the "scan" range, as expected
        // don't add half the bin size. try to solve this within plotting method

        float scanpoint = parameterToScan_min + (parameterToScan_max - parameterToScan_min) * (double)i / ((double)nPoints1d - 1);
				if (arg->debug) cout << "DEBUG in MethodDatasetsProbScan::scan1d_prob() " << scanpoint << " " << parameterToScan_min << " " << parameterToScan_max << endl;

        this->probScanTree->scanpoint = scanpoint;

        if (arg->debug) cout << "DEBUG in MethodDatasetsProbScan::scan1d_prob() - scanpoint in step " << i << " : " << scanpoint << endl;

        // don't scan in unphysical region
        // by default this means checking against "free" range
        if ( scanpoint < parameterToScan->getMin() || scanpoint > parameterToScan->getMax() + 2e-13 ) {
            cout << "it seems we are scanning in an unphysical region: " << scanpoint << " < " << parameterToScan->getMin() << " or " << scanpoint << " > " << parameterToScan->getMax() + 2e-13 << endl;
            exit(EXIT_FAILURE);
        }

        // FIT TO REAL DATA WITH FIXED HYPOTHESIS(=SCANPOINT).
        // THIS GIVES THE NUMERATOR FOR THE PROFILE LIKELIHOOD AT THE GIVEN HYPOTHESIS
        // THE RESULTING NUISANCE PARAMETERS TOGETHER WITH THE GIVEN HYPOTHESIS ARE ALSO
        // USED WHEN SIMULATING THE TOY DATA FOR THE FELDMAN-COUSINS METHOD FOR THIS HYPOTHESIS(=SCANPOINT)
        // Here the scanvar has to be fixed -> this is done once per scanpoint
        // and provides the scanner with the DeltaChi2 for the data as reference
        // additionally the nuisances are set to the resulting fit values

        parameterToScan->setVal(scanpoint);
        parameterToScan->setConstant(true);

        RooFitResult *result = this->loadAndFit(this->pdf); // fit on data
        assert(result);

        if (arg->debug) {
            cout << "DEBUG in MethodDatasetsProbScan::scan1d_prob() - minNll data scan at scan point " << scanpoint << " : " << 2 * result->minNll() << ": "<< 2 * pdf->getMinNll() << endl;
        }
        this->probScanTree->statusScanData = result->status();

        // set chi2 of fixed fit: scan fit on data
        // CAVEAT: chi2min from fitresult gives incompatible results to chi2min from pdf
        // this->probScanTree->chi2min           = 2 * result->minNll();
        this->probScanTree->chi2min           = 2 * pdf->getMinNll();
        this->probScanTree->covQualScanData   = result->covQual();
        this->probScanTree->scanbest  = freeDataFitValue;

        // After doing the fit with the parameter of interest constrained to the scanpoint,
        // we are now saving the fit values of the nuisance parameters. These values will be
        // used to generate toys according to the PLUGIN method.
        this->probScanTree->storeParsScan(); // \todo : figure out which one of these is semantically the right one
//.........这里部分代码省略.........
开发者ID:gammacombo,项目名称:gammacombo,代码行数:101,代码来源:MethodDatasetsProbScan.cpp

示例12: createWorkspace

void createWorkspace(const std::string &infilename, int nState, bool correctCtau, bool drawRapPt2D, bool drawPtCPM2D){
	gROOT->SetStyle("Plain");
	gStyle->SetTitleBorderSize(0);

	// Set some strings
	const std::string workspacename = "ws_masslifetime",
				treename = "selectedData";

	// Get the tree from the data file
	TFile *f = TFile::Open(infilename.c_str());
	TTree *tree = (TTree*)f->Get(treename.c_str());

	// Set branch addresses in tree to be able to import tree to roofit
	TLorentzVector* jpsi = new TLorentzVector;
	tree->SetBranchAddress("JpsiP",&jpsi);
	double CPMval = 0;
	tree->SetBranchAddress("CPM",&CPMval);
	double massErr = 0;
	tree->SetBranchAddress("JpsiMassErr",&massErr);
	double Vprob = 0;
	tree->SetBranchAddress("JpsiVprob",&Vprob);
	double lifetime = 0;
	tree->SetBranchAddress("Jpsict",&lifetime);
	double lifetimeErr = 0;
	tree->SetBranchAddress("JpsictErr",&lifetimeErr);

	// define variables necessary for J/Psi(Psi(2S)) mass,lifetime fit
	RooRealVar* JpsiMass =
		new RooRealVar("JpsiMass", "M [GeV]", onia::massMin, onia::massMax);
	RooRealVar* JpsiMassErr =
		new RooRealVar("JpsiMassErr", "#delta M [GeV]", 0, 5);
	RooRealVar* JpsiRap =
		new RooRealVar("JpsiRap", "y", -onia::rap, onia::rap);
	RooRealVar* JpsiPt =
		new RooRealVar("JpsiPt", "p_{T} [GeV]", 0. ,100.);
	RooRealVar* JpsiCPM =
		new RooRealVar("JpsiCPM", "N_{ch}", 0. ,100.);		
	RooRealVar* Jpsict =
		new RooRealVar("Jpsict", "lifetime [mm]", -1., 2.5);
	RooRealVar* JpsictErr =
		new RooRealVar("JpsictErr", "Error on lifetime [mm]", 0.0001, 1);
	RooRealVar* JpsiVprob =
		new RooRealVar("JpsiVprob", "", 0.01, 1.);

	// Set bins
	Jpsict->setBins(10000,"cache");
	Jpsict->setBins(100);
	JpsiMass->setBins(100);
	JpsictErr->setBins(100);

	// The list of data variables    
	RooArgList dataVars(*JpsiMass,*JpsiMassErr,*JpsiRap,*JpsiPt,*JpsiCPM,*Jpsict,*JpsictErr,*JpsiVprob);

	// construct dataset to contain events
	RooDataSet* fullData = new RooDataSet("fullData","The Full Data From the Input ROOT Trees",dataVars);

	int entries = tree->GetEntries();
	cout << "entries " << entries << endl;

	// loop through events in tree and save them to dataset
	for (int ientries = 0; ientries < entries; ientries++) {
	
		if (ientries%100000==0) std::cout << "event " << ientries << " of " << entries <<  std::endl;

		tree->GetEntry(ientries);

		double M =jpsi->M();
		double y=jpsi->Rapidity();
		double pt=jpsi->Pt();
		double cpm=CPMval;


		if (M > JpsiMass->getMin() && M < JpsiMass->getMax()
				&& massErr > JpsiMassErr->getMin() && massErr < JpsiMassErr->getMax()
				&& pt > JpsiPt->getMin() && pt < JpsiPt->getMax()
				&& cpm > JpsiCPM->getMin() && cpm < JpsiCPM->getMax()
				&& y > JpsiRap->getMin() && y < JpsiRap->getMax()
				&& lifetime > Jpsict->getMin() && lifetime < Jpsict->getMax()
				&& lifetimeErr > JpsictErr->getMin() && lifetimeErr < JpsictErr->getMax()
				&& Vprob > JpsiVprob->getMin() && Vprob < JpsiVprob->getMax()
			 ){

			JpsiPt      ->setVal(pt); 
			JpsiCPM		->setVal(cpm);
			JpsiRap     ->setVal(y); 
			JpsiMass    ->setVal(M);
			JpsiMassErr ->setVal(massErr);
			JpsiVprob   ->setVal(Vprob);

			//cout<<"before lifetime correction \n"
			//	<<"Jpsict: "<<lifetime<<" JpsictErr: "<<lifetimeErr<<endl;

			if(correctCtau){
				lifetime    = lifetime    * onia::MpsiPDG / M ;
				lifetimeErr = lifetimeErr * onia::MpsiPDG / M ;
				Jpsict    ->setVal(lifetime);
				JpsictErr ->setVal(lifetimeErr);
				//cout<<"MpsiPDG: "<<onia::MpsiPDG<<endl;
				//cout<<"after lifetime correction \n"
				//	<<"Jpsict: "<<lifetime<<" JpsictErr: "<<lifetimeErr<<endl;
//.........这里部分代码省略.........
开发者ID:cferraio,项目名称:JPsi_Nch_Polarization,代码行数:101,代码来源:createWorkspace.C

示例13: StandardTestStatDistributionDemo

void StandardTestStatDistributionDemo(const char* infile = "",
                                      const char* workspaceName = "combined",
                                      const char* modelConfigName = "ModelConfig",
                                      const char* dataName = "obsData"){


  // the number of toy MC used to generate the distribution
  int nToyMC = 1000;
  // The parameter below is needed for asymptotic distribution to be chi-square,
  // but set to false if your model is not numerically stable if mu<0
  bool allowNegativeMu=true;


  /////////////////////////////////////////////////////////////
  // First part is just to access a user-defined file
  // or create the standard example file if it doesn't exist
  ////////////////////////////////////////////////////////////
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


  /////////////////////////////////////////////////////////////
  // Now get the data and workspace
  ////////////////////////////////////////////////////////////

  // get the workspace out of the file
  RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
  if(!w){
    cout <<"workspace not found" << endl;
    return;
  }

  // get the modelConfig out of the file
  ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

  // get the modelConfig out of the file
  RooAbsData* data = w->data(dataName);

  // make sure ingredients are found
  if(!data || !mc){
    w->Print();
    cout << "data or ModelConfig was not found" <<endl;
    return;
  }

  mc->Print();
  /////////////////////////////////////////////////////////////
  // Now find the upper limit based on the asymptotic results
  ////////////////////////////////////////////////////////////
  RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
  ProfileLikelihoodCalculator plc(*data,*mc);
  LikelihoodInterval* interval = plc.GetInterval();
  double plcUpperLimit = interval->UpperLimit(*firstPOI);
  delete interval;
  cout << "\n\n--------------------------------------"<<endl;
  cout <<"Will generate sampling distribution at " << firstPOI->GetName() << " = " << plcUpperLimit <<endl;
  int nPOI = mc->GetParametersOfInterest()->getSize();
  if(nPOI>1){
    cout <<"not sure what to do with other parameters of interest, but here are their values"<<endl;
    mc->GetParametersOfInterest()->Print("v");
  }

  /////////////////////////////////////////////
  // create thte test stat sampler
  ProfileLikelihoodTestStat ts(*mc->GetPdf());

  // to avoid effects from boundary and simplify asymptotic comparison, set min=-max
  if(allowNegativeMu)
    firstPOI->setMin(-1*firstPOI->getMax());

  // temporary RooArgSet
//.........这里部分代码省略.........
开发者ID:MycrofD,项目名称:root,代码行数:101,代码来源:StandardTestStatDistributionDemo.C

示例14: if

///
/// Perform 1d Prob scan.
///
/// - Scan range defined through limit "scan".
/// - Will fill the hCL histogram with the 1-CL curve.
/// - Start at a scan value that is in the middle of the allowed
///   range, preferably a solution, and scan up and down from there.
/// - use the "probforce" command line flag to enable force minimum finding
///
/// \param fast This will scan each scanpoint only once.
/// \param reverse This will scan in reverse direction.
///   When using the drag mode, this can sometimes make a difference.
/// \return status: 2 = new global minimum found, 1 = error
///
int MethodProbScan::scan1d(bool fast, bool reverse)
{
	if ( arg->debug ) cout << "MethodProbScan::scan1d() : starting ... " << endl;
	nScansDone++;

	// The "improve" method doesn't need multiple scans.
	if ( arg->probforce || arg->probimprove ) fast = true;
	if ( arg->probforce ) scanDisableDragMode = true;

	// Save parameter values that were active at function call.
	if ( startPars ) delete startPars;
	startPars = new RooDataSet("startPars", "startPars", *w->set(parsName));
	startPars->add(*w->set(parsName));

	// // start scan from global minimum (not always a good idea as we need to set from other places as well)
	// setParameters(w, parsName, globalMin);

	// load scan parameter and scan range
	setLimit(w, scanVar1, "scan");
	RooRealVar *par = w->var(scanVar1);
	assert(par);
	float min = hCL->GetXaxis()->GetXmin();
	float max = hCL->GetXaxis()->GetXmax();
	if ( fabs(par->getMin()-min)>1e-6 || fabs(par->getMax()-max)>1e-6 ){
		cout << "MethodProbScan::scan1d() : WARNING : Scan range was changed after initScan()" << endl;
		cout << "                           was called so the old range will be used." << endl;
	}
	if ( arg->verbose ){
		cout << "\nProb configuration:" << endl;
		cout << "  combination : " << title << endl;
		cout << "  scan variable : " << scanVar1 << endl;
		cout << "  scan range : " << min << " ... " << max << endl;
		cout << "  scan steps : " << nPoints1d << endl;
		cout << "  fast mode : " << fast << endl;
		cout << endl;
	}

	// Set limit to all parameters.
	combiner->loadParameterLimits();

	// fix scan parameter
	par->setConstant(true);

	// j =
	// 0 : start value -> upper limit
	// 1 : upper limit -> start value
	// 2 : start value -> lower limit
	// 3 : lower limit -> start value
	float startValue = par->getVal();
	bool scanUp;

	// for the status bar
	float nTotalSteps = nPoints1d;
	nTotalSteps *= fast ? 1 : 2;
	float nStep = 0;
	float printFreq = nTotalSteps>15 ? 10 : nTotalSteps;

	// Report on the smallest new minimum we come across while scanning.
	// Sometimes the scan doesn't find the minimum
	// that was found before. Warn if this happens.
	double bestMinOld = chi2minGlobal;
	double bestMinFoundInScan = 100.;

	for ( int jj=0; jj<4; jj++ )
	{
		int j = jj;
		if ( reverse ) switch(jj)
		{
			case 0: j = 2; break;
			case 1: j = 3; break;
			case 2: j = 0; break;
			case 3: j = 1; break;
		}

		float scanStart, scanStop;
		switch(j)
		{
			case 0:
				// UP
				setParameters(w, parsName, startPars->get(0));
				scanStart = startValue;
				scanStop  = par->getMax();
				scanUp = true;
				break;
			case 1:
				// DOWN
//.........这里部分代码省略.........
开发者ID:gammacombo,项目名称:gammacombo,代码行数:101,代码来源:MethodProbScan.cpp

示例15: OneSidedFrequentistUpperLimitWithBands


//.........这里部分代码省略.........
   }

   if(mc->GetGlobalObservables()){
      cout << "will use global observables for unconditional ensemble"<<endl;
      mc->GetGlobalObservables()->Print();
      toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
   }


   // Now get the interval
   PointSetInterval* interval = fc.GetInterval();
   ConfidenceBelt* belt = fc.GetConfidenceBelt();

   // print out the interval on the first Parameter of Interest
   cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
      interval->LowerLimit(*firstPOI) << ", "<<
      interval->UpperLimit(*firstPOI) <<"] "<<endl;

   // get observed UL and value of test statistic evaluated there
   RooArgSet tmpPOI(*firstPOI);
   double observedUL = interval->UpperLimit(*firstPOI);
   firstPOI->setVal(observedUL);
   double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);


   // Ask the calculator which points were scanned
   RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
   RooArgSet* tmpPoint;

   // make a histogram of parameter vs. threshold
   TH1F* histOfThresholds = new TH1F("histOfThresholds","",
                                       parameterScan->numEntries(),
                                       firstPOI->getMin(),
                                       firstPOI->getMax());
   histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName());
   histOfThresholds->GetYaxis()->SetTitle("Threshold");

   // loop through the points that were tested and ask confidence belt
   // what the upper/lower thresholds were.
   // For FeldmanCousins, the lower cut off is always 0
   for(Int_t i=0; i<parameterScan->numEntries(); ++i){
      tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
      //cout <<"get threshold"<<endl;
      double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
      double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ;
      histOfThresholds->Fill(poiVal,arMax);
   }
   TCanvas* c1 = new TCanvas();
   c1->Divide(2);
   c1->cd(1);
   histOfThresholds->SetMinimum(0);
   histOfThresholds->Draw();
   c1->cd(2);

   // -------------------------------------------------------
   // Now we generate the expected bands and power-constraint

   // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters
   RooAbsReal* nll = mc->GetPdf()->createNLL(*data);
   RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest());
   firstPOI->setVal(0.);
   profile->getVal(); // this will do fit and set nuisance parameters to profiled values
   RooArgSet* poiAndNuisance = new RooArgSet();
   if(mc->GetNuisanceParameters())
      poiAndNuisance->add(*mc->GetNuisanceParameters());
   poiAndNuisance->add(*mc->GetParametersOfInterest());
开发者ID:Y--,项目名称:root,代码行数:67,代码来源:OneSidedFrequentistUpperLimitWithBands.C


注:本文中的RooRealVar::getMax方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。