当前位置: 首页>>代码示例>>C++>>正文


C++ RooAbsReal::getPropagatedError方法代码示例

本文整理汇总了C++中RooAbsReal::getPropagatedError方法的典型用法代码示例。如果您正苦于以下问题:C++ RooAbsReal::getPropagatedError方法的具体用法?C++ RooAbsReal::getPropagatedError怎么用?C++ RooAbsReal::getPropagatedError使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在RooAbsReal的用法示例。


在下文中一共展示了RooAbsReal::getPropagatedError方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: fitTo

   RooFitResult* GenericModel::fitTo(RooDataSet* data)
   {
      // Perform fit of the pseudo-PDF to the data
      // On multi-core machines, this automatically uses all available processor cores

      SafeDelete(fLastFit);
#ifdef WITH_MULTICORE_CPU
      fLastFit = fModelPseudoPDF->fitTo(*data, Save(), NumCPU(WITH_MULTICORE_CPU));
#else
      fLastFit = fModelPseudoPDF->fitTo(*data, Save());
#endif

      SafeDelete(fParamDataHist);
      fParamDataHist = new RooDataHist("params", "params", GetParameters());

      // store weights of component pdfs => distribution of parameters
      fWeights.removeAll();
      const RooArgList& coefs = fModelPseudoPDF->coefList();
      for (int i = 0; i < GetNumberOfDataSets(); i++) {
         RooAbsReal* coef = (RooAbsReal*)coefs.at(i);
         RooRealVar w(Form("w%d", i), Form("Fitted weight of kernel#%d", i), coef->getVal());
         if (coef->InheritsFrom(RooRealVar::Class())) {
            w.setError(((RooRealVar*)coef)->getError());
         } else {
            w.setError(coef->getPropagatedError(*fLastFit));
         }
         fWeights.addClone(w);
         fParamDataHist->set(*GetParametersForDataset(i), w.getVal(), w.getError());
      }

      SafeDelete(fParameterPDF);
      fParameterPDF = new RooHistPdf("paramPDF", "paramPDF", GetParameters(), *fParamDataHist);

      return fLastFit;
   }
开发者ID:GiuseppePast,项目名称:kaliveda,代码行数:35,代码来源:GenericModel.cpp

示例2: BackgroundPrediction


//.........这里部分代码省略.........
        error_curve[4]->SetLineColor(kYellow);
        
        error_curve[2]->SetLineColor(kBlue);
        error_curve[2]->SetLineWidth(3);
        
        double binSize = rebin;
        
        for (int i=0; i!=nPoints; ++i) {
            double x0,y0, x1,y1;
            error_curve[2]->GetPoint(i,x0,y0);
            
            RooAbsReal* nlim = new RooRealVar("nlim","y0",y0,-100000,100000);
            //double lowedge = x0 - (SR_hi - SR_lo)/double(2*nPoints);
            //double upedge = x0 + (SR_hi - SR_lo)/double(2*nPoints);
            
            double lowedge = x0 - binSize/2.;
            double upedge = x0 + binSize/2.;
            
            x.setRange("errRange",lowedge,upedge);
            
            RooExtendPdf* epdf = new RooExtendPdf("epdf","extpdf",bg, *nlim,"errRange");
            
            // Construct unbinned likelihood
            RooAbsReal* nll = epdf->createNLL(pred2,NumCPU(2));
            // Minimize likelihood w.r.t all parameters before making plots
            RooMinimizer* minim = new RooMinimizer(*nll);
            minim->setMinimizerType("Minuit2");
            minim->setStrategy(2);
            minim->setPrintLevel(-1);
            minim->migrad();
            
            minim->hesse();
            RooFitResult* result = minim->lastMinuitFit();
            double errm = nlim->getPropagatedError(*result);
            
            //std::cout<<x0<<" "<<lowedge<<" "<<upedge<<" "<<y0<<" "<<nlim->getVal()<<" "<<errm<<std::endl;
            
            error_curve[0]->SetPoint(i,x0,(y0-errm));
            error_curve[0]->SetPoint(2*nPoints-i-1,x0,y0+errm);
            
            error_curve[1]->SetPoint(i,x0,(y0-2*errm));
            error_curve[1]->SetPoint(2*nPoints-i-1,x0,(y0+2*errm));
            
            error_curve[3]->SetPoint(i,x0,-errm/sqrt(y0));
            error_curve[3]->SetPoint(2*nPoints-i-1,x0,errm/sqrt(y0));
            
            error_curve[4]->SetPoint(i,x0,-2*errm/sqrt(y0));
            error_curve[4]->SetPoint(2*nPoints-i-1,x0,2*errm/sqrt(y0));
            
        }
        
        int npois = 0;
        dataGr->SetMarkerSize(1.0);
        dataGr->SetMarkerStyle (20);
        
        const double alpha = 1 - 0.6827;
        
        for (int i=0; i!=h_SR_Prediction->GetNbinsX(); ++i){
            if (h_SR_Prediction->GetBinContent(i+1) > 0) {
                
                int N = h_SR_Prediction->GetBinContent(i+1);
                double L =  (N==0) ? 0  : (ROOT::Math::gamma_quantile(alpha/2,N,1.));
                double U =  ROOT::Math::gamma_quantile_c(alpha/2,N+1,1) ;
                
                dataGr->SetPoint(npois,h_SR_Prediction->GetBinCenter(i+1),h_SR_Prediction->GetBinContent(i+1));
                dataGr->SetPointEYlow(npois, N-L);
开发者ID:cvernier,项目名称:Vg,代码行数:67,代码来源:BackgroundPrediction.c


注:本文中的RooAbsReal::getPropagatedError方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。