本文整理汇总了C++中Quad2D::get_num_points方法的典型用法代码示例。如果您正苦于以下问题:C++ Quad2D::get_num_points方法的具体用法?C++ Quad2D::get_num_points怎么用?C++ Quad2D::get_num_points使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Quad2D
的用法示例。
在下文中一共展示了Quad2D::get_num_points方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: integrate_over_wall
// Custom function to calculate drag coefficient.
double integrate_over_wall(MeshFunction* meshfn, int marker)
{
Quad2D* quad = &g_quad_2d_std;
meshfn->set_quad_2d(quad);
double integral = 0.0;
Element* e;
Mesh* mesh = meshfn->get_mesh();
for_all_active_elements(e, mesh)
{
for(int edge = 0; edge < e->nvert; edge++)
{
if ((e->en[edge]->bnd) && (e->en[edge]->marker == marker))
{
update_limit_table(e->get_mode());
RefMap* ru = meshfn->get_refmap();
meshfn->set_active_element(e);
int eo = quad->get_edge_points(edge);
meshfn->set_quad_order(eo, H2D_FN_VAL);
scalar *uval = meshfn->get_fn_values();
double3* pt = quad->get_points(eo);
double3* tan = ru->get_tangent(edge);
for (int i = 0; i < quad->get_num_points(eo); i++)
integral += pt[i][2] * uval[i] * tan[i][2];
}
}
}
return integral * 0.5;
}
示例2: precalculate
void FilterFluxDensity::precalculate(int order, int mask)
{
Quad2D* quad = quads[cur_quad];
int np = quad->get_num_points(order, this->get_active_element()->get_mode());
Node* node = new_node(H2D_FN_DEFAULT, np);
sln[0]->set_quad_order(order, H2D_FN_VAL | H2D_FN_DX | H2D_FN_DY);
sln[1]->set_quad_order(order, H2D_FN_VAL | H2D_FN_DX | H2D_FN_DY);
double *dudx1, *dudy1, *dudx2, *dudy2;
sln[0]->get_dx_dy_values(dudx1, dudy1);
sln[1]->get_dx_dy_values(dudx2, dudy2);
double *uval1 = sln[0]->get_fn_values();
double *uval2 = sln[1]->get_fn_values();
update_refmap();
double *x = refmap->get_phys_x(order);
for (int i = 0; i < np; i++)
{
node->values[0][0][i] = std::sqrt(sqr(dudy1[i]) + sqr(dudy2[i]) +
sqr(dudx1[i] + ((x[i] > 1e-10) ? uval1[i] / x[i] : 0.0)) +
sqr(dudx2[i] + ((x[i] > 1e-10) ? uval2[i] / x[i] : 0.0)));
}
if(nodes->present(order))
{
assert(nodes->get(order) == cur_node);
::free(nodes->get(order));
}
nodes->add(node, order);
cur_node = node;
}
示例3: eval_form
// Actual evaluation of surface linear form (calculates integral)
scalar FeProblem::eval_form(WeakForm::VectorFormSurf *vfs, Tuple<Solution *> u_ext, PrecalcShapeset *fv, RefMap *rv, EdgePos* ep)
{
// eval the form
Quad2D* quad = fv->get_quad_2d();
int eo = quad->get_edge_points(ep->edge);
double3* pt = quad->get_points(eo);
int np = quad->get_num_points(eo);
// init geometry and jacobian*weights
if (cache_e[eo] == NULL)
{
cache_e[eo] = init_geom_surf(rv, ep, eo);
double3* tan = rv->get_tangent(ep->edge);
cache_jwt[eo] = new double[np];
for(int i = 0; i < np; i++)
cache_jwt[eo][i] = pt[i][2] * tan[i][2];
}
Geom<double>* e = cache_e[eo];
double* jwt = cache_jwt[eo];
// function values and values of external functions
AUTOLA_OR(Func<scalar>*, prev, wf->neq);
for (int i = 0; i < wf->neq; i++) prev[i] = init_fn(u_ext[i], rv, eo);
Func<double>* v = get_fn(fv, rv, eo);
ExtData<scalar>* ext = init_ext_fns(vfs->ext, rv, eo);
scalar res = vfs->fn(np, jwt, prev, v, e, ext);
for (int i = 0; i < wf->neq; i++) { prev[i]->free_fn(); delete prev[i]; }
ext->free(); delete ext;
return 0.5 * res;
}
示例4: CalculateBoundaryLength
//------------------------------------------------------------------------------
// Compute marked boundary length
//
double CalculateBoundaryLength(Mesh* mesh, int bdryMarker)
{
// Variables declaration.
Element* e;
double length = 0;
RefMap rm;
rm.set_quad_2d(&g_quad_2d_std);
Quad2D * quad = rm.get_quad_2d();
int points_location;
double3* points;
int np;
double3* tangents;
// Loop through all boundary faces of all active elements.
for_all_active_elements(e, mesh) {
for(int edge = 0; edge < e->nvert; ++edge) {
if ((e->en[edge]->bnd) && (e->en[edge]->marker == bdryMarker)) {
rm.set_active_element(e);
points_location = quad->get_edge_points(edge);
points = quad->get_points(points_location);
np = quad->get_num_points(points_location);
tangents = rm.get_tangent(edge, points_location);
for(int i = 0; i < np; i++) {
// Weights sum up to two on every edge, therefore the division by two must be present.
length += 0.5 * points[i][2] * tangents[i][2];
}
}
}
}
return length;
} // end of CalculateBoundaryLength()
示例5: precalculate
void SimpleFilter::precalculate(int order, int mask)
{
if (mask & (H2D_FN_DX | H2D_FN_DY | H2D_FN_DXX | H2D_FN_DYY | H2D_FN_DXY))
error("Filter not defined for derivatives.");
Quad2D* quad = quads[cur_quad];
int np = quad->get_num_points(order);
Node* node = new_node(H2D_FN_VAL, np);
// precalculate all solutions
for (int i = 0; i < num; i++)
sln[i]->set_quad_order(order, item[i]);
for (int j = 0; j < num_components; j++)
{
// obtain corresponding tables
scalar* tab[10];
for (int i = 0; i < num; i++)
{
int a = 0, b = 0, mask = item[i];
if (mask >= 0x40) { a = 1; mask >>= 6; }
while (!(mask & 1)) { mask >>= 1; b++; }
tab[i] = sln[i]->get_values(num_components == 1 ? a : j, b);
if (tab[i] == NULL) error("Value of 'item%d' is incorrect in filter definition.", i+1);
}
Tuple<scalar*> values;
for(int i = 0; i < this->num; i++)
values.push_back(tab[i]);
// apply the filter
filter_fn(np, values, node->values[j][0]);
}
示例6: get_peak
// Calculates maximum of a given function, including its coordinates.
Extremum get_peak(MeshFunction *sln)
{
Quad2D* quad = &g_quad_2d_std;
sln->set_quad_2d(quad);
Element* e;
Mesh* mesh = sln->get_mesh();
scalar peak = 0.0;
double pos_x = 0.0;
double pos_y = 0.0;
for_all_active_elements(e, mesh)
{
update_limit_table(e->get_mode());
sln->set_active_element(e);
RefMap* ru = sln->get_refmap();
int o = sln->get_fn_order() + ru->get_inv_ref_order();
limit_order(o);
sln->set_quad_order(o, H2D_FN_VAL);
scalar *uval = sln->get_fn_values();
int np = quad->get_num_points(o);
double* x = ru->get_phys_x(o);
double* y = ru->get_phys_y(o);
for (int i = 0; i < np; i++)
if (uval[i] > peak) {
peak = uval[i];
pos_x = x[i];
pos_y = y[i];
}
}
示例7:
// Initialize edge marker, coordinates, tangent and normals
Geom<double>* init_geom_surf(RefMap *rm, SurfPos* surf_pos, const int order)
{
Geom<double>* e = new Geom<double>;
e->edge_marker = surf_pos->marker;
e->elem_marker = rm->get_active_element()->marker;
e->diam = rm->get_active_element()->get_diameter();
e->id = rm->get_active_element()->en[surf_pos->surf_num]->id;
e->x = rm->get_phys_x(order);
e->y = rm->get_phys_y(order);
double3 *tan;
tan = rm->get_tangent(surf_pos->surf_num, order);
Quad2D* quad = rm->get_quad_2d();
int np = quad->get_num_points(order);
e->tx = new double [np];
e->ty = new double [np];
e->nx = new double [np];
e->ny = new double [np];
for (int i = 0; i < np; i++)
{
e->tx[i] = tan[i][0]; e->ty[i] = tan[i][1];
e->nx[i] = tan[i][1]; e->ny[i] = - tan[i][0];
}
e->orientation = rm->get_active_element()->get_edge_orientation(surf_pos->surf_num);
return e;
}
示例8: while
void SimpleFilter<Scalar>::precalculate(int order, int mask)
{
if(mask & (H2D_FN_DX | H2D_FN_DY | H2D_FN_DXX | H2D_FN_DYY | H2D_FN_DXY))
throw Hermes::Exceptions::Exception("Filter not defined for derivatives.");
Quad2D* quad = this->quads[this->cur_quad];
int np = quad->get_num_points(order, this->element->get_mode());
struct Function<Scalar>::Node* node = this->new_node(H2D_FN_VAL, np);
// precalculate all solutions
for (int i = 0; i < this->num; i++)
this->sln[i]->set_quad_order(order, item[i]);
for (int j = 0; j < this->num_components; j++)
{
// obtain corresponding tables
Scalar* tab[H2D_MAX_COMPONENTS];
for (int i = 0; i < this->num; i++)
{
int a = 0, b = 0, mask = item[i];
if(mask >= 0x40) { a = 1; mask >>= 6; }
while (!(mask & 1)) { mask >>= 1; b++; }
tab[i] = this->sln[i]->get_values(this->num_components == 1 ? a : j, b);
if(tab[i] == nullptr) throw Hermes::Exceptions::Exception("Value of 'item%d' is incorrect in filter definition.", i + 1);
}
Hermes::vector<Scalar*> values;
for(int i = 0; i < this->num; i++)
values.push_back(tab[i]);
// apply the filter
filter_fn(np, values, node->values[j][0]);
}
示例9: eval_error
scalar HcurlOrthoHP::eval_error(biform_val_t bi_fn, biform_ord_t bi_ord,
MeshFunction *sln1, MeshFunction *sln2, MeshFunction *rsln1, MeshFunction *rsln2,
RefMap *rv1, RefMap *rv2, RefMap *rrv1, RefMap *rrv2)
{
// determine the integration order
int inc = (rsln1->get_num_components() == 2) ? 1 : 0;
Func<Ord>* ou = init_fn_ord(rsln1->get_fn_order() + inc);
Func<Ord>* ov = init_fn_ord(rsln2->get_fn_order() + inc);
double fake_wt = 1.0;
Geom<Ord>* fake_e = init_geom_ord();
Ord o = bi_ord(1, &fake_wt, ou, ov, fake_e, NULL);
int order = rrv1->get_inv_ref_order();
order += o.get_order();
limit_order(order);
ou->free_ord(); delete ou;
ov->free_ord(); delete ov;
delete fake_e;
// eval the form
Quad2D* quad = sln1->get_quad_2d();
double3* pt = quad->get_points(order);
int np = quad->get_num_points(order);
// init geometry and jacobian*weights
Geom<double>* e = init_geom_vol(rrv1, order);
double* jac = rrv1->get_jacobian(order);
double* jwt = new double[np];
for(int i = 0; i < np; i++)
jwt[i] = pt[i][2] * jac[i];
// function values and values of external functions
Func<scalar>* err1 = init_fn(sln1, rv1, order);
Func<scalar>* err2 = init_fn(sln2, rv2, order);
Func<scalar>* v1 = init_fn(rsln1, rrv1, order);
Func<scalar>* v2 = init_fn(rsln2, rrv2, order);
for (int i = 0; i < np; i++)
{
err1->val0[i] = err1->val0[i] - v1->val0[i];
err1->val1[i] = err1->val1[i] - v1->val1[i];
err1->curl[i] = err1->curl[i] - v1->curl[i];
err2->val0[i] = err2->val0[i] - v2->val0[i];
err2->val1[i] = err2->val1[i] - v2->val1[i];
err2->curl[i] = err2->curl[i] - v2->curl[i];
}
scalar res = bi_fn(np, jwt, err1, err2, e, NULL);
e->free(); delete e;
delete [] jwt;
err1->free_fn(); delete err1;
err2->free_fn(); delete err2;
v1->free_fn(); delete v1;
v2->free_fn(); delete v2;
return res;
}
示例10: eval_boundary_estimator
double KellyTypeAdapt::eval_boundary_estimator(KellyTypeAdapt::ErrorEstimatorForm* err_est_form, RefMap *rm, SurfPos* surf_pos)
{
// determine the integration order
int inc = (this->sln[err_est_form->i]->get_num_components() == 2) ? 1 : 0;
Func<Ord>** oi = new Func<Ord>* [num];
for (int i = 0; i < num; i++)
oi[i] = init_fn_ord(this->sln[i]->get_edge_fn_order(surf_pos->surf_num) + inc);
// Order of additional external functions.
ExtData<Ord>* fake_ext = dp.init_ext_fns_ord(err_est_form->ext, surf_pos->surf_num);
double fake_wt = 1.0;
Geom<Ord>* fake_e = init_geom_ord();
Ord o = err_est_form->ord(1, &fake_wt, oi, oi[err_est_form->i], fake_e, fake_ext);
int order = rm->get_inv_ref_order();
order += o.get_order();
limit_order(order);
// Clean up.
for (int i = 0; i < this->num; i++)
if (oi[i] != NULL) { oi[i]->free_ord(); delete oi[i]; }
delete [] oi;
delete fake_e;
delete fake_ext;
// eval the form
Quad2D* quad = this->sln[err_est_form->i]->get_quad_2d();
int eo = quad->get_edge_points(surf_pos->surf_num, order);
double3* pt = quad->get_points(eo);
int np = quad->get_num_points(eo);
// init geometry and jacobian*weights
Geom<double>* e = init_geom_surf(rm, surf_pos, eo);
double3* tan = rm->get_tangent(surf_pos->surf_num, eo);
double* jwt = new double[np];
for(int i = 0; i < np; i++)
jwt[i] = pt[i][2] * tan[i][2];
// function values
Func<scalar>** ui = new Func<scalar>* [num];
for (int i = 0; i < num; i++)
ui[i] = init_fn(this->sln[i], eo);
ExtData<scalar>* ext = dp.init_ext_fns(err_est_form->ext, rm, eo);
scalar res = boundary_scaling_const *
err_est_form->value(np, jwt, ui, ui[err_est_form->i], e, ext);
for (int i = 0; i < this->num; i++)
if (ui[i] != NULL) { ui[i]->free_fn(); delete ui[i]; }
delete [] ui;
if (ext != NULL) { ext->free(); delete ext; }
e->free(); delete e;
delete [] jwt;
return std::abs(0.5*res); // Edges are parameterized from 0 to 1 while integration weights
// are defined in (-1, 1). Thus multiplying with 0.5 to correct
// the weights.
}
示例11: eval_volumetric_estimator
double KellyTypeAdapt::eval_volumetric_estimator(KellyTypeAdapt::ErrorEstimatorForm* err_est_form, RefMap *rm)
{
// determine the integration order
int inc = (this->sln[err_est_form->i]->get_num_components() == 2) ? 1 : 0;
Func<Ord>** oi = new Func<Ord>* [num];
for (int i = 0; i < num; i++)
oi[i] = init_fn_ord(this->sln[i]->get_fn_order() + inc);
// Order of additional external functions.
ExtData<Ord>* fake_ext = dp.init_ext_fns_ord(err_est_form->ext);
double fake_wt = 1.0;
Geom<Ord>* fake_e = init_geom_ord();
Ord o = err_est_form->ord(1, &fake_wt, oi, oi[err_est_form->i], fake_e, fake_ext);
int order = rm->get_inv_ref_order();
order += o.get_order();
limit_order(order);
// Clean up.
for (int i = 0; i < this->num; i++)
if (oi[i] != NULL) { oi[i]->free_ord(); delete oi[i]; }
delete [] oi;
delete fake_e;
delete fake_ext;
// eval the form
Quad2D* quad = this->sln[err_est_form->i]->get_quad_2d();
double3* pt = quad->get_points(order);
int np = quad->get_num_points(order);
// init geometry and jacobian*weights
Geom<double>* e = init_geom_vol(rm, order);
double* jac = rm->get_jacobian(order);
double* jwt = new double[np];
for(int i = 0; i < np; i++)
jwt[i] = pt[i][2] * jac[i];
// function values
Func<scalar>** ui = new Func<scalar>* [num];
for (int i = 0; i < num; i++)
ui[i] = init_fn(this->sln[i], order);
ExtData<scalar>* ext = dp.init_ext_fns(err_est_form->ext, rm, order);
scalar res = volumetric_scaling_const *
err_est_form->value(np, jwt, ui, ui[err_est_form->i], e, ext);
for (int i = 0; i < this->num; i++)
if (ui[i] != NULL) { ui[i]->free_fn(); delete ui[i]; }
delete [] ui;
if (ext != NULL) { ext->free(); delete ext; }
e->free(); delete e;
delete [] jwt;
return std::abs(res);
}
示例12: calc_inv_ref_order
int RefMap::calc_inv_ref_order()
{
Quad2D* quad = get_quad_2d();
int i, o, mo = quad->get_max_order();
// check first the positivity of the jacobian
double3* pt = quad->get_points(mo);
double2x2* m = get_inv_ref_map(mo);
double* jac = get_jacobian(mo);
for (i = 0; i < quad->get_num_points(mo); i++)
if (jac[i] <= 0.0)
error("Element #%d is concave or badly oriented.", element->id);
// next, estimate the "exact" value of the typical integral int_grad_u_grad_v
// (with grad_u == grad_v == (1,1)) using the maximum integration rule
double exact1 = 0.0;
double exact2 = 0.0;
for (i = 0; i < quad->get_num_points(mo); i++, m++)
{
exact1 += pt[i][2] * jac[i] * (sqr((*m)[0][0] + (*m)[0][1]) + sqr((*m)[1][0] + (*m)[1][1]));
exact2 += pt[i][2] / jac[i];
}
// find sufficient quadrature degree
for (o = 0; o < mo; o++)
{
pt = quad->get_points(o);
m = get_inv_ref_map(o);
jac = get_jacobian(o);
double result1 = 0.0;
double result2 = 0.0;
for (i = 0; i < quad->get_num_points(o); i++, m++)
{
result1 += pt[i][2] * jac[i] * (sqr((*m)[0][0] + (*m)[0][1]) + sqr((*m)[1][0] + (*m)[1][1]));
result2 += pt[i][2] / jac[i] ;
}
if ((fabs((exact1 - result1) / exact1) < 1e-8) &&
(fabs((exact2 - result2) / exact2) < 1e-8)) break;
}
if (o >= 10) {
warn("Element #%d is too distorted (iro ~ %d).", element->id, o);
}
return o;
}
示例13: precalculate
void ViewScalarFilter::precalculate(int order, int mask)
{
Quad2D* quad = quads[cur_quad];
int np = quad->get_num_points(order);
node = new_node(H2D_FN_DEFAULT, np);
if (sln[0])
{
sln[0]->set_quad_order(order, H2D_FN_VAL | H2D_FN_DX | H2D_FN_DY);
sln[0]->get_dx_dy_values(dudx1, dudy1);
value1 = sln[0]->get_fn_values();
}
if (num >= 2 && sln[1])
{
sln[1]->set_quad_order(order, H2D_FN_VAL | H2D_FN_DX | H2D_FN_DY);
sln[1]->get_dx_dy_values(dudx2, dudy2);
value2 = sln[1]->get_fn_values();
}
if (num >= 3 && sln[2])
{
sln[2]->set_quad_order(order, H2D_FN_VAL | H2D_FN_DX | H2D_FN_DY);
sln[2]->get_dx_dy_values(dudx3, dudy3);
value3 = sln[2]->get_fn_values();
}
update_refmap();
x = refmap->get_phys_x(order);
y = refmap->get_phys_y(order);
Element *e = refmap->get_active_element();
material = Util::scene()->labels[atoi(mesh->get_element_markers_conversion().get_user_marker(e->marker).c_str())]->material;
for (int i = 0; i < np; i++)
{
calculateVariable(i);
}
if (nodes->present(order))
{
assert(nodes->get(order) == cur_node);
::free(nodes->get(order));
}
nodes->add(node, order);
cur_node = node;
}
示例14: eval_solution_norm
double KellyTypeAdapt::eval_solution_norm(Adapt::MatrixFormVolError* form, RefMap *rm, MeshFunction* sln)
{
// determine the integration order
int inc = (sln->get_num_components() == 2) ? 1 : 0;
Func<Ord>* ou = init_fn_ord(sln->get_fn_order() + inc);
double fake_wt = 1.0;
Geom<Ord>* fake_e = init_geom_ord();
Ord o = form->ord(1, &fake_wt, NULL, ou, ou, fake_e, NULL);
int order = rm->get_inv_ref_order();
order += o.get_order();
Solution *sol = static_cast<Solution *>(sln);
if(sol && sol->get_type() == HERMES_EXACT) {
limit_order_nowarn(order);
}
else {
limit_order(order);
}
ou->free_ord(); delete ou;
delete fake_e;
// eval the form
Quad2D* quad = sln->get_quad_2d();
double3* pt = quad->get_points(order);
int np = quad->get_num_points(order);
// init geometry and jacobian*weights
Geom<double>* e = init_geom_vol(rm, order);
double* jac = rm->get_jacobian(order);
double* jwt = new double[np];
for(int i = 0; i < np; i++)
jwt[i] = pt[i][2] * jac[i];
// function values
Func<scalar>* u = init_fn(sln, order);
scalar res = form->value(np, jwt, NULL, u, u, e, NULL);
e->free(); delete e;
delete [] jwt;
u->free_fn(); delete u;
return std::abs(res);
}
示例15: if
// Preparation of mesh-functions
Func<scalar>* init_fn(MeshFunction *fu, RefMap *rm, const int order)
{
// sanity checks
if (fu == NULL) error("NULL MeshFunction in Func<scalar>*::init_fn().");
if (fu->get_mesh() == NULL) error("Uninitialized MeshFunction used.");
int nc = fu->get_num_components();
Quad2D* quad = fu->get_quad_2d();
fu->set_quad_order(order);
double3* pt = quad->get_points(order);
int np = quad->get_num_points(order);
Func<scalar>* u = new Func<scalar>(np, nc);
if (u->nc == 1)
{
u->val = new scalar [np];
u->dx = new scalar [np];
u->dy = new scalar [np];
memcpy(u->val, fu->get_fn_values(), np * sizeof(scalar));
memcpy(u->dx, fu->get_dx_values(), np * sizeof(scalar));
memcpy(u->dy, fu->get_dy_values(), np * sizeof(scalar));
}
else if (u->nc == 2)
{
u->val0 = new scalar [np];
u->val1 = new scalar [np];
u->curl = new scalar [np];
u->div = new scalar [np];
memcpy(u->val0, fu->get_fn_values(0), np * sizeof(scalar));
memcpy(u->val1, fu->get_fn_values(1), np * sizeof(scalar));
// This works.
scalar *dx1 = fu->get_dx_values(1);
scalar *dy0 = fu->get_dy_values(0);
for (int i = 0; i < np; i++) u->curl[i] = dx1[i] - dy0[i];
// This was never tested but it should work.
scalar *dx0 = fu->get_dx_values(0);
scalar *dy1 = fu->get_dy_values(1);
for (int i = 0; i < np; i++) u->div[i] = dx0[i] + dy1[i];
}
return u;
}