本文整理汇总了C++中ProjectionPath类的典型用法代码示例。如果您正苦于以下问题:C++ ProjectionPath类的具体用法?C++ ProjectionPath怎么用?C++ ProjectionPath使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ProjectionPath类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getMember
// Get the aggregate member based on the top of the projection stack.
static SILValue getMember(SILInstruction *inst, ProjectionPath &projStack) {
if (!projStack.empty()) {
const Projection &proj = projStack.back();
return proj.getOperandForAggregate(inst);
}
return SILValue();
}
示例2: createMemLocation
MemLocation MemLocation::createMemLocation(SILValue Base, ProjectionPath &P1,
ProjectionPath &P2) {
ProjectionPath T;
T.append(P1);
T.append(P2);
return MemLocation(Base, T);
}
示例3: ProjectionPath
Optional<ProjectionPath>
ProjectionPath::subtractPaths(const ProjectionPath &LHS, const ProjectionPath &RHS) {
// If RHS is greater than or equal to LHS in size, RHS can not be a prefix of
// LHS. Return None.
unsigned RHSSize = RHS.size();
unsigned LHSSize = LHS.size();
if (RHSSize >= LHSSize)
return llvm::NoneType::None;
// First make sure that the prefix matches.
Optional<ProjectionPath> P = ProjectionPath();
for (unsigned i = 0; i < RHSSize; i++) {
if (LHS.Path[i] != RHS.Path[i]) {
P.reset();
return P;
}
}
// Add the rest of LHS to P and return P.
for (unsigned i = RHSSize, e = LHSSize; i != e; ++i) {
P->Path.push_back(LHS.Path[i]);
}
return P;
}
示例4: getType
void LSLocation::getFirstLevelLSLocations(LSLocationList &Locs,
SILModule *Mod) {
SILType Ty = getType();
llvm::SmallVector<Projection, 8> Out;
Projection::getFirstLevelAddrProjections(Ty, *Mod, Out);
for (auto &X : Out) {
ProjectionPath P;
P.append(X);
P.append(Path.getValue());
Locs.push_back(LSLocation(Base, P));
}
}
示例5: computeSubSeqRelation
/// TODO: Integrate has empty non-symmetric difference into here.
SubSeqRelation_t
ProjectionPath::
computeSubSeqRelation(const ProjectionPath &RHS) const {
// If either path is empty, we can not prove anything, return Unrelated.
if (empty() || RHS.empty())
return SubSeqRelation_t::Unrelated;
// We reverse the projection path to scan from the common object.
auto LHSReverseIter = rbegin();
auto RHSReverseIter = RHS.rbegin();
unsigned MinPathSize = std::min(size(), RHS.size());
// For each index i until min path size...
for (unsigned i = 0; i != MinPathSize; ++i) {
// Grab the current projections.
const Projection &LHSProj = *LHSReverseIter;
const Projection &RHSProj = *RHSReverseIter;
// If the two projections do not equal exactly, return Unrelated.
//
// TODO: If Index equals zero, then we know that the two lists have nothing
// in common and should return unrelated. If Index is greater than zero,
// then we know that the two projection paths have a common base but a
// non-empty symmetric difference. For now we just return Unrelated since I
// can not remember why I had the special check in the
// hasNonEmptySymmetricDifference code.
if (LHSProj != RHSProj)
return SubSeqRelation_t::Unrelated;
// Otherwise increment reverse iterators.
LHSReverseIter++;
RHSReverseIter++;
}
// Ok, we now know that one of the paths is a subsequence of the other. If
// both size() and RHS.size() equal then we know that the entire sequences
// equal.
if (size() == RHS.size())
return SubSeqRelation_t::Equal;
// If MinPathSize == size(), then we know that LHS is a strict subsequence of
// RHS.
if (MinPathSize == size())
return SubSeqRelation_t::LHSStrictSubSeqOfRHS;
// Otherwise, we know that MinPathSize must be RHS.size() and RHS must be a
// strict subsequence of LHS. Assert to check this and return.
assert(MinPathSize == RHS.size() &&
"Since LHS and RHS don't equal and size() != MinPathSize, RHS.size() "
"must equal MinPathSize");
return SubSeqRelation_t::RHSStrictSubSeqOfLHS;
}
示例6: move
Optional<ProjectionPath>
ProjectionPath::getAddrProjectionPath(SILValue Start, SILValue End,
bool IgnoreCasts) {
// Do not inspect the body of structs with unreferenced types such as
// bitfields and unions.
if (Start.getType().aggregateHasUnreferenceableStorage() ||
End.getType().aggregateHasUnreferenceableStorage()) {
return llvm::NoneType::None;
}
ProjectionPath P;
// If Start == End, there is a "trivial" address projection in between the
// two. This is represented by returning an empty ProjectionPath.
if (Start == End)
return std::move(P);
// Otherwise see if End can be projection extracted from Start. First see if
// End is a projection at all.
auto Iter = End;
if (IgnoreCasts)
Iter = Iter.stripCasts();
bool NextAddrIsIndex = false;
while (Projection::isAddrProjection(Iter) && Start != Iter) {
Projection AP = *Projection::addressProjectionForValue(Iter);
P.Path.push_back(AP);
NextAddrIsIndex = (AP.getKind() == ProjectionKind::Index);
Iter = cast<SILInstruction>(*Iter).getOperand(0);
if (IgnoreCasts)
Iter = Iter.stripCasts();
}
// Return None if we have an empty projection list or if Start == Iter.
// If the next project is index_addr, then Start and End actually point to
// disjoint locations (the value at Start has an implicit index_addr #0).
if (P.empty() || Start != Iter || NextAddrIsIndex)
return llvm::NoneType::None;
// Otherwise, return P.
return std::move(P);
}
示例7: hasNonEmptySymmetricDifference
/// Returns true if the two paths have a non-empty symmetric difference.
///
/// This means that the two objects have the same base but access different
/// fields of the base object.
bool
ProjectionPath::
hasNonEmptySymmetricDifference(const ProjectionPath &RHS) const {
// If either the LHS or RHS is empty, there is no common base class. Return
// false.
if (empty() || RHS.empty())
return false;
// We reverse the projection path to scan from the common object.
auto LHSReverseIter = Path.rbegin();
auto RHSReverseIter = RHS.Path.rbegin();
// For each index i until min path size...
for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) {
// Grab the current projections.
const Projection &LHSProj = *LHSReverseIter;
const Projection &RHSProj = *RHSReverseIter;
// If we are accessing different fields of a common object, return
// true. The two projection paths must have a non-empty symmetric
// difference.
if (areProjectionsToDifferentFields(LHSProj, RHSProj)) {
DEBUG(llvm::dbgs() << " Path different at index: " << i << '\n');
return true;
}
// Otherwise, if the two projections equal exactly, they have no symmetric
// difference.
if (LHSProj == RHSProj)
return false;
// Continue if we are accessing the same field.
LHSReverseIter++;
RHSReverseIter++;
}
// We checked
return false;
}
示例8: getStoredValue
SILValue ConstantTracker::getStoredValue(SILInstruction *loadInst,
ProjectionPath &projStack) {
SILInstruction *store = links[loadInst];
if (!store && callerTracker)
store = callerTracker->links[loadInst];
if (!store) return SILValue();
assert(isa<LoadInst>(loadInst) || isa<CopyAddrInst>(loadInst));
// Push the address projections of the load onto the stack.
SmallVector<Projection, 4> loadProjections;
scanProjections(loadInst->getOperand(0), &loadProjections);
for (const Projection &proj : loadProjections) {
projStack.push_back(proj);
}
// Pop the address projections of the store from the stack.
SmallVector<Projection, 4> storeProjections;
scanProjections(store->getOperand(1), &storeProjections);
for (auto iter = storeProjections.rbegin(); iter != storeProjections.rend();
++iter) {
const Projection &proj = *iter;
// The corresponding load-projection must match the store-projection.
if (projStack.empty() || projStack.back() != proj)
return SILValue();
projStack.pop_back();
}
if (isa<StoreInst>(store))
return store->getOperand(0);
// The copy_addr instruction is both a load and a store. So we follow the link
// again.
assert(isa<CopyAddrInst>(store));
return getStoredValue(store, projStack);
}
示例9: while
void
ProjectionPath::expandTypeIntoLeafProjectionPaths(SILType B, SILModule *Mod,
ProjectionPathList &Paths,
bool OnlyLeafNode) {
// Perform a BFS to expand the given type into projectionpath each of
// which contains 1 field from the type.
ProjectionPathList Worklist;
llvm::SmallVector<Projection, 8> Projections;
// Push an empty projection path to get started.
SILType Ty;
ProjectionPath P;
Worklist.push_back(std::move(P));
do {
// Get the next level projections based on current projection's type.
Optional<ProjectionPath> PP = Worklist.pop_back_val();
// Get the current type to process, the very first projection path will be
// empty.
Ty = PP.getValue().empty() ? B : PP.getValue().front().getType();
// Get the first level projection of the current type.
Projections.clear();
Projection::getFirstLevelAddrProjections(Ty, *Mod, Projections);
// Reached the end of the projection tree, this field can not be expanded
// anymore.
if (Projections.empty()) {
Paths.push_back(std::move(PP.getValue()));
continue;
}
// If this is a class type, we also have reached the end of the type
// tree for this type.
//
// We do not push its next level projection into the worklist,
// if we do that, we could run into an infinite loop, e.g.
//
// class SelfLoop {
// var p : SelfLoop
// }
//
// struct XYZ {
// var x : Int
// var y : SelfLoop
// }
//
// The worklist would never be empty in this case !.
//
if (Ty.getClassOrBoundGenericClass()) {
Paths.push_back(std::move(PP.getValue()));
continue;
}
// This is NOT a leaf node, keep the intermediate nodes as well.
if (!OnlyLeafNode)
Paths.push_back(std::move(PP.getValue()));
// Keep expanding the location.
for (auto &P : Projections) {
ProjectionPath X;
X.append(P);
X.append(PP.getValue());
Worklist.push_back(std::move(X));
}
// Keep iterating if the worklist is not empty.
} while (!Worklist.empty());
}