本文整理汇总了C++中ProgramStateRef::getConstraintManager方法的典型用法代码示例。如果您正苦于以下问题:C++ ProgramStateRef::getConstraintManager方法的具体用法?C++ ProgramStateRef::getConstraintManager怎么用?C++ ProgramStateRef::getConstraintManager使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ProgramStateRef
的用法示例。
在下文中一共展示了ProgramStateRef::getConstraintManager方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: StreamRange
std::string
IntegerOverflowChecker::getSymbolInformation(const SVal &Val, const Expr *E,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
std::string StreamRangeStr, SValDumpStr;
llvm::raw_string_ostream StreamRange(StreamRangeStr), SValDump(SValDumpStr);
Val.dumpToStream(SValDump);
if (Val.getSubKind() == SymbolValKind) {
State->getConstraintManager().print(State, StreamRange, "\n", "\n");
StreamRange.flush();
size_t from = StreamRangeStr.find(SValDump.str() + " : ");
if (from != std::string::npos) {
size_t to = StreamRangeStr.find("\n", from);
from += SValDump.str().length();
SValDump.str().append(StreamRangeStr.substr(from, to - from));
}
}
if (!E || isa<IntegerLiteral>(E->IgnoreParenCasts()))
return SValDump.str();
E = E->IgnoreParens();
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
isa<IntegerLiteral>(UO->getSubExpr()))
return SValDump.str();
SValDump << " (";
E->printPretty(SValDump, 0, C.getASTContext().getPrintingPolicy());
SValDump << ")";
return SValDump.str();
}
示例2: isLeaked
static bool isLeaked(SymbolRef Sym, const StreamState &SS,
bool IsSymDead, ProgramStateRef State) {
if (IsSymDead && SS.isOpened()) {
// If a symbol is NULL, assume that fopen failed on this path.
// A symbol should only be considered leaked if it is non-null.
ConstraintManager &CMgr = State->getConstraintManager();
ConditionTruthVal OpenFailed = CMgr.isNull(State, Sym);
return !OpenFailed.isConstrainedTrue();
}
return false;
}
示例3: checkDeadSymbols
void MacOSKeychainAPIChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
AllocatedDataTy ASet = State->get<AllocatedData>();
if (ASet.isEmpty())
return;
bool Changed = false;
AllocationPairVec Errors;
for (AllocatedDataTy::iterator I = ASet.begin(), E = ASet.end(); I != E; ++I) {
if (SR.isLive(I->first))
continue;
Changed = true;
State = State->remove<AllocatedData>(I->first);
// If the allocated symbol is null or if the allocation call might have
// returned an error, do not report.
ConstraintManager &CMgr = State->getConstraintManager();
ConditionTruthVal AllocFailed = CMgr.isNull(State, I.getKey());
if (AllocFailed.isConstrainedTrue() ||
definitelyReturnedError(I->second.Region, State, C.getSValBuilder()))
continue;
Errors.push_back(std::make_pair(I->first, &I->second));
}
if (!Changed) {
// Generate the new, cleaned up state.
C.addTransition(State);
return;
}
static SimpleProgramPointTag Tag("MacOSKeychainAPIChecker : DeadSymbolsLeak");
ExplodedNode *N = C.addTransition(C.getState(), C.getPredecessor(), &Tag);
// Generate the error reports.
for (AllocationPairVec::iterator I = Errors.begin(), E = Errors.end();
I != E; ++I) {
C.emitReport(generateAllocatedDataNotReleasedReport(*I, N, C));
}
// Generate the new, cleaned up state.
C.addTransition(State, N);
}
示例4: resolvePossiblyDestroyedMutex
// In PthreadSemantics, pthread_mutex_destroy() returns zero if the lock is
// successfully destroyed and it returns a non-zero value otherwise.
ProgramStateRef PthreadLockChecker::resolvePossiblyDestroyedMutex(
ProgramStateRef state, const MemRegion *lockR, const SymbolRef *sym) const {
const LockState *lstate = state->get<LockMap>(lockR);
// Existence in DestroyRetVal ensures existence in LockMap.
// Existence in Destroyed also ensures that the lock state for lockR is either
// UntouchedAndPossiblyDestroyed or UnlockedAndPossiblyDestroyed.
assert(lstate->isUntouchedAndPossiblyDestroyed() ||
lstate->isUnlockedAndPossiblyDestroyed());
ConstraintManager &CMgr = state->getConstraintManager();
ConditionTruthVal retZero = CMgr.isNull(state, *sym);
if (retZero.isConstrainedFalse()) {
if (lstate->isUntouchedAndPossiblyDestroyed())
state = state->remove<LockMap>(lockR);
else if (lstate->isUnlockedAndPossiblyDestroyed())
state = state->set<LockMap>(lockR, LockState::getUnlocked());
} else
state = state->set<LockMap>(lockR, LockState::getDestroyed());
// Removing the map entry (lockR, sym) from DestroyRetVal as the lock state is
// now resolved.
state = state->remove<DestroyRetVal>(lockR);
return state;
}
示例5: evalBinOpNN
//.........这里部分代码省略.........
BinaryOperator::Opcode opc = symIntExpr->getOpcode();
switch (opc) {
default:
// We don't know how to negate this operation.
// Just handle it as if it were a normal comparison to 0.
break;
case BO_LAnd:
case BO_LOr:
llvm_unreachable("Logical operators handled by branching logic.");
case BO_Assign:
case BO_MulAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_AddAssign:
case BO_SubAssign:
case BO_ShlAssign:
case BO_ShrAssign:
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
case BO_Comma:
llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
case BO_PtrMemD:
case BO_PtrMemI:
llvm_unreachable("Pointer arithmetic not handled here.");
case BO_LT:
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ:
case BO_NE:
assert(resultTy->isBooleanType() ||
resultTy == getConditionType());
assert(symIntExpr->getType()->isBooleanType() ||
getContext().hasSameUnqualifiedType(symIntExpr->getType(),
getConditionType()));
// Negate the comparison and make a value.
opc = BinaryOperator::negateComparisonOp(opc);
return makeNonLoc(symIntExpr->getLHS(), opc,
symIntExpr->getRHS(), resultTy);
}
}
// For now, only handle expressions whose RHS is a constant.
if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
// If both the LHS and the current expression are additive,
// fold their constants and try again.
if (BinaryOperator::isAdditiveOp(op)) {
BinaryOperator::Opcode lop = symIntExpr->getOpcode();
if (BinaryOperator::isAdditiveOp(lop)) {
// Convert the two constants to a common type, then combine them.
// resultTy may not be the best type to convert to, but it's
// probably the best choice in expressions with mixed type
// (such as x+1U+2LL). The rules for implicit conversions should
// choose a reasonable type to preserve the expression, and will
// at least match how the value is going to be used.
APSIntType IntType = BasicVals.getAPSIntType(resultTy);
const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
const llvm::APSInt &second = IntType.convert(*RHSValue);
const llvm::APSInt *newRHS;
if (lop == op)
newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
else
newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
assert(newRHS && "Invalid operation despite common type!");
rhs = nonloc::ConcreteInt(*newRHS);
lhs = nonloc::SymbolVal(symIntExpr->getLHS());
op = lop;
continue;
}
}
// Otherwise, make a SymIntExpr out of the expression.
return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
}
}
// Does the symbolic expression simplify to a constant?
// If so, "fold" the constant by setting 'lhs' to a ConcreteInt
// and try again.
ConstraintManager &CMgr = state->getConstraintManager();
if (const llvm::APSInt *Constant = CMgr.getSymVal(state, Sym)) {
lhs = nonloc::ConcreteInt(*Constant);
continue;
}
// Is the RHS a constant?
if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
// Give up -- this is not a symbolic expression we can handle.
return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
}
}
}
}