本文整理汇总了C++中Polylines::end方法的典型用法代码示例。如果您正苦于以下问题:C++ Polylines::end方法的具体用法?C++ Polylines::end怎么用?C++ Polylines::end使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Polylines
的用法示例。
在下文中一共展示了Polylines::end方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
ClipperLib::Paths Slic3rMultiPoints_to_ClipperPaths(const Polylines &input)
{
ClipperLib::Paths retval;
for (Polylines::const_iterator it = input.begin(); it != input.end(); ++it)
retval.emplace_back(Slic3rMultiPoint_to_ClipperPath(*it));
return retval;
}
示例2:
void
ExtrusionPath::_inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const
{
for (Polylines::const_iterator it = polylines.begin(); it != polylines.end(); ++it) {
ExtrusionPath* path = this->clone();
path->polyline = *it;
collection->entities.push_back(path);
}
}
示例3: extrusion_entities_append_paths
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polylines::const_iterator it_polyline = polylines.begin(); it_polyline != polylines.end(); ++ it_polyline) {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = *it_polyline;
}
}
示例4: leftmost_point
Point PolylineCollection::leftmost_point(const Polylines &polylines)
{
if (polylines.empty()) CONFESS("leftmost_point() called on empty PolylineCollection");
Polylines::const_iterator it = polylines.begin();
Point p = it->leftmost_point();
for (++ it; it != polylines.end(); ++it) {
Point p2 = it->leftmost_point();
if (p2.x < p.x)
p = p2;
}
return p;
}
示例5: flow
ExtrusionEntityCollection
PerimeterGenerator::_fill_gaps(double min, double max, double w,
const Polygons &gaps) const
{
ExtrusionEntityCollection coll;
min *= (1 - INSET_OVERLAP_TOLERANCE);
ExPolygons curr = diff_ex(
offset2(gaps, -min/2, +min/2),
offset2(gaps, -max/2, +max/2),
true
);
Polylines polylines;
for (ExPolygons::const_iterator ex = curr.begin(); ex != curr.end(); ++ex)
ex->medial_axis(max, min/2, &polylines);
if (polylines.empty())
return coll;
#ifdef SLIC3R_DEBUG
if (!curr.empty())
printf(" %zu gaps filled with extrusion width = %f\n", curr.size(), w);
#endif
//my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w);
Flow flow(
w, this->layer_height, this->solid_infill_flow.nozzle_diameter
);
double mm3_per_mm = flow.mm3_per_mm();
for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) {
ExtrusionPath path(erGapFill);
path.polyline = *p;
path.mm3_per_mm = mm3_per_mm;
path.width = flow.width;
path.height = this->layer_height;
if (p->is_valid() && p->first_point().coincides_with(p->last_point())) {
// since medial_axis() now returns only Polyline objects, detect loops here
ExtrusionLoop loop;
loop.paths.push_back(path);
coll.append(loop);
} else {
coll.append(path);
}
}
return coll;
}
示例6: main
int main()
{
// Domain (Warning: Sphere_3 constructor uses squared radius !)
Mesh_domain domain(sphere_function,
K::Sphere_3(Point(1, 0, 0), 6.));
// Mesh criteria
Mesh_criteria criteria(edge_size = 0.15,
facet_angle = 25, facet_size = 0.15,
cell_radius_edge_ratio = 2, cell_size = 0.15);
// Create edge that we want to preserve
Polylines polylines (1);
Polyline_3& polyline = polylines.front();
for(int i = 0; i < 360; ++i)
{
Point p (1, std::cos(i*CGAL_PI/180), std::sin(i*CGAL_PI/180));
polyline.push_back(p);
}
polyline.push_back(polyline.front()); // close the line
// Insert edge in domain
domain.add_features(polylines.begin(), polylines.end());
// Mesh generation without feature preservation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,
CGAL::parameters::no_features());
std::ofstream medit_file("out-no-protection.mesh");
c3t3.output_to_medit(medit_file);
medit_file.close();
c3t3.clear();
// Mesh generation with feature preservation
c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria);
// Output
medit_file.open("out-with-protection.mesh");
c3t3.output_to_medit(medit_file);
medit_file.close();
return 0;
}
示例7:
Lines
_clipper_ln(ClipperLib::ClipType clipType, const Lines &subject, const Polygons &clip,
bool safety_offset_)
{
// convert Lines to Polylines
Polylines polylines;
polylines.reserve(subject.size());
for (Lines::const_iterator line = subject.begin(); line != subject.end(); ++line)
polylines.push_back(*line);
// perform operation
polylines = _clipper_pl(clipType, polylines, clip, safety_offset_);
// convert Polylines to Lines
Lines retval;
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline)
retval.push_back(*polyline);
return retval;
}
示例8: Line
Lines
_clipper_ln(ClipperLib::ClipType clipType, const Lines &subject, const Polygons &clip,
bool safety_offset_)
{
// convert Lines to Polylines
Polylines polylines;
polylines.reserve(subject.size());
for (const Line &line : subject)
polylines.emplace_back(Polyline(line.a, line.b));
// perform operation
polylines = _clipper_pl(clipType, polylines, clip, safety_offset_);
// convert Polylines to Lines
Lines retval;
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline)
retval.emplace_back(polyline->operator Line());
return retval;
}
示例9: main
int main()
{
// Define functions
Function f1 = cube_function_1;
Function f2 = cube_function_2;
Function_vector v;
v.push_back(f1);
v.push_back(f2);
std::vector<std::string> vps;
vps.push_back("--");
// Domain (Warning: Sphere_3 constructor uses square radius !)
Mesh_domain_with_features domain(Function_wrapper(v, vps), K::Sphere_3(CGAL::ORIGIN, 5.*5.));
Polylines polylines;
create_polylines(polylines);
domain.add_features(polylines.begin(),polylines.end());
// Set mesh criteria
Mesh_criteria criteria(edge_size = 0.15,
facet_angle = 30, facet_size = 0.2,
cell_radius_edge_ratio = 2, cell_size = 0.4);
// Mesh generation
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria, no_exude(), no_perturb());
// Perturbation (maximum cpu time: 10s, targeted dihedral angle: default)
CGAL::perturb_mesh_3(c3t3, domain, time_limit = 10);
// Exudation
CGAL::exude_mesh_3(c3t3,12);
// Output
std::ofstream medit_file("out_cubes_intersection_with_features.mesh");
CGAL::output_to_medit(medit_file, c3t3);
return 0;
}
示例10: loop
void
PerimeterGenerator::process()
{
// other perimeters
this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
coord_t pwidth = this->perimeter_flow.scaled_width();
coord_t pspacing = this->perimeter_flow.scaled_spacing();
// external perimeters
this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
coord_t ext_pwidth = this->ext_perimeter_flow.scaled_width();
coord_t ext_pspacing = this->ext_perimeter_flow.scaled_spacing();
coord_t ext_pspacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
// overhang perimeters
this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
// solid infill
coord_t ispacing = this->solid_infill_flow.scaled_spacing();
coord_t gap_area_threshold = pwidth * pwidth;
// Calculate the minimum required spacing between two adjacent traces.
// This should be equal to the nominal flow spacing but we experiment
// with some tolerance in order to avoid triggering medial axis when
// some squishing might work. Loops are still spaced by the entire
// flow spacing; this only applies to collapsing parts.
// For ext_min_spacing we use the ext_pspacing calculated for two adjacent
// external loops (which is the correct way) instead of using ext_pspacing2
// which is the spacing between external and internal, which is not correct
// and would make the collapsing (thus the details resolution) dependent on
// internal flow which is unrelated.
coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE);
coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE);
// prepare grown lower layer slices for overhang detection
if (this->lower_slices != NULL && this->config->overhangs) {
// We consider overhang any part where the entire nozzle diameter is not supported by the
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
// in the current layer
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2));
}
// we need to process each island separately because we might have different
// extra perimeters for each one
for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
surface != this->slices->surfaces.end(); ++surface) {
// detect how many perimeters must be generated for this island
signed short loop_number = this->config->perimeters + surface->extra_perimeters;
loop_number--; // 0-indexed loops
Polygons gaps;
Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
if (loop_number >= 0) { // no loops = -1
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
Polylines thin_walls;
// we loop one time more than needed in order to find gaps after the last perimeter was applied
for (signed short i = 0; i <= loop_number+1; ++i) { // outer loop is 0
Polygons offsets;
if (i == 0) {
// the minimum thickness of a single loop is:
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
if (this->config->thin_walls) {
offsets = offset2(
last,
-(ext_pwidth/2 + ext_min_spacing/2 - 1),
+(ext_min_spacing/2 - 1)
);
} else {
offsets = offset(last, -ext_pwidth/2);
}
// look for thin walls
if (this->config->thin_walls) {
Polygons diffpp = diff(
last,
offset(offsets, +ext_pwidth/2),
true // medial axis requires non-overlapping geometry
);
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
// (actually, something larger than that still may exist due to mitering or other causes)
coord_t min_width = ext_pwidth / 2;
ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2);
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
Polylines pp;
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp);
double threshold = ext_pwidth * 2;
for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
if (p->length() > threshold) {
thin_walls.push_back(*p);
}
//.........这里部分代码省略.........
示例11: path
ExtrusionEntityCollection
PerimeterGenerator::_traverse_loops(const PerimeterGeneratorLoops &loops,
Polylines &thin_walls) const
{
// loops is an arrayref of ::Loop objects
// turn each one into an ExtrusionLoop object
ExtrusionEntityCollection coll;
for (PerimeterGeneratorLoops::const_iterator loop = loops.begin();
loop != loops.end(); ++loop) {
bool is_external = loop->is_external();
ExtrusionRole role;
ExtrusionLoopRole loop_role;
role = is_external ? erExternalPerimeter : erPerimeter;
if (loop->is_internal_contour()) {
// Note that we set loop role to ContourInternalPerimeter
// also when loop is both internal and external (i.e.
// there's only one contour loop).
loop_role = elrContourInternalPerimeter;
} else {
loop_role = elrDefault;
}
// detect overhanging/bridging perimeters
ExtrusionPaths paths;
if (this->config->overhangs && this->layer_id > 0
&& !(this->object_config->support_material && this->object_config->support_material_contact_distance.value == 0)) {
// get non-overhang paths by intersecting this loop with the grown lower slices
{
Polylines polylines;
intersection((Polygons)loop->polygon, this->_lower_slices_p, &polylines);
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
ExtrusionPath path(role);
path.polyline = *polyline;
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
path.width = is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width;
path.height = this->layer_height;
paths.push_back(path);
}
}
// get overhang paths by checking what parts of this loop fall
// outside the grown lower slices (thus where the distance between
// the loop centerline and original lower slices is >= half nozzle diameter
{
Polylines polylines;
diff((Polygons)loop->polygon, this->_lower_slices_p, &polylines);
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
ExtrusionPath path(erOverhangPerimeter);
path.polyline = *polyline;
path.mm3_per_mm = this->_mm3_per_mm_overhang;
path.width = this->overhang_flow.width;
path.height = this->overhang_flow.height;
paths.push_back(path);
}
}
// reapply the nearest point search for starting point
// We allow polyline reversal because Clipper may have randomly
// reversed polylines during clipping.
paths = ExtrusionEntityCollection(paths).chained_path();
} else {
ExtrusionPath path(role);
path.polyline = loop->polygon.split_at_first_point();
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
path.width = is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width;
path.height = this->layer_height;
paths.push_back(path);
}
coll.append(ExtrusionLoop(paths, loop_role));
}
// append thin walls to the nearest-neighbor search (only for first iteration)
for (Polylines::const_iterator polyline = thin_walls.begin(); polyline != thin_walls.end(); ++polyline) {
ExtrusionPath path(erExternalPerimeter);
path.polyline = *polyline;
path.mm3_per_mm = this->_mm3_per_mm;
path.width = this->perimeter_flow.width;
path.height = this->layer_height;
coll.append(path);
}
thin_walls.clear();
// sort entities into a new collection using a nearest-neighbor search,
// preserving the original indices which are useful for detecting thin walls
ExtrusionEntityCollection sorted_coll;
coll.chained_path(&sorted_coll, false, &sorted_coll.orig_indices);
// traverse children and build the final collection
ExtrusionEntityCollection entities;
for (std::vector<size_t>::const_iterator idx = sorted_coll.orig_indices.begin();
idx != sorted_coll.orig_indices.end();
++idx) {
if (*idx >= loops.size()) {
// this is a thin wall
// let's get it from the sorted collection as it might have been reversed
//.........这里部分代码省略.........
示例12:
void
SVG::draw(const Polylines &polylines, std::string stroke)
{
for (Polylines::const_iterator it = polylines.begin(); it != polylines.end(); ++it)
this->draw(*it, fill);
}
示例13:
void
PolylineCollection::append(const Polylines &pp)
{
this->polylines.insert(this->polylines.end(), pp.begin(), pp.end());
}
示例14:
void
SVG::draw(const Polylines &polylines, std::string stroke, coordf_t stroke_width)
{
for (Polylines::const_iterator it = polylines.begin(); it != polylines.end(); ++it)
this->draw(*it, stroke, stroke_width);
}