当前位置: 首页>>代码示例>>C++>>正文


C++ PointCloudOut::insert方法代码示例

本文整理汇总了C++中PointCloudOut::insert方法的典型用法代码示例。如果您正苦于以下问题:C++ PointCloudOut::insert方法的具体用法?C++ PointCloudOut::insert怎么用?C++ PointCloudOut::insert使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PointCloudOut的用法示例。


在下文中一共展示了PointCloudOut::insert方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: computeMLSPointNormal

template <typename PointInT, typename PointOutT> void
pcl::MovingLeastSquares<PointInT, PointOutT>::performProcessing (PointCloudOut &output)
{
  // Compute the number of coefficients
  nr_coeff_ = (order_ + 1) * (order_ + 2) / 2;

  // Allocate enough space to hold the results of nearest neighbor searches
  // \note resize is irrelevant for a radiusSearch ().
  std::vector<int> nn_indices;
  std::vector<float> nn_sqr_dists;

  // For all points
  for (size_t cp = 0; cp < indices_->size (); ++cp)
  {
    // Get the initial estimates of point positions and their neighborhoods
    if (!searchForNeighbors ((*indices_)[cp], nn_indices, nn_sqr_dists))
      continue;


    // Check the number of nearest neighbors for normal estimation (and later
    // for polynomial fit as well)
    if (nn_indices.size () < 3)
      continue;


    PointCloudOut projected_points;
    NormalCloud projected_points_normals;
    // Get a plane approximating the local surface's tangent and project point onto it
    int index = (*indices_)[cp];
    computeMLSPointNormal (index, nn_indices, nn_sqr_dists, projected_points, projected_points_normals, *corresponding_input_indices_, mls_results_[index]);


    // Copy all information from the input cloud to the output points (not doing any interpolation)
    for (size_t pp = 0; pp < projected_points.size (); ++pp)
      copyMissingFields (input_->points[(*indices_)[cp]], projected_points[pp]);


    // Append projected points to output
    output.insert (output.end (), projected_points.begin (), projected_points.end ());
    if (compute_normals_)
      normals_->insert (normals_->end (), projected_points_normals.begin (), projected_points_normals.end ());
  }

  // Perform the distinct-cloud or voxel-grid upsampling
  performUpsampling (output);
}
开发者ID:Cakem1x,项目名称:pcl,代码行数:46,代码来源:mls.hpp

示例2: voxel_grid

template <typename PointInT, typename PointOutT> void
pcl::MovingLeastSquares<PointInT, PointOutT>::performProcessing (PointCloudOut &output)
{
  // Compute the number of coefficients
  nr_coeff_ = (order_ + 1) * (order_ + 2) / 2;

  // Allocate enough space to hold the results of nearest neighbor searches
  // \note resize is irrelevant for a radiusSearch ().
  std::vector<int> nn_indices;
  std::vector<float> nn_sqr_dists;

  // For all points
  for (size_t cp = 0; cp < indices_->size (); ++cp)
  {
    // Get the initial estimates of point positions and their neighborhoods
    if (!searchForNeighbors (int (cp), nn_indices, nn_sqr_dists))
      continue;

    // Check the number of nearest neighbors for normal estimation (and later
    // for polynomial fit as well)
    if (nn_indices.size () < 3)
      continue;


    PointCloudOut projected_points;
    NormalCloud projected_points_normals;
    // Get a plane approximating the local surface's tangent and project point onto it
    computeMLSPointNormal (int (cp), *input_, nn_indices, nn_sqr_dists, projected_points, projected_points_normals);

    // Append projected points to output
    output.insert (output.end (), projected_points.begin (), projected_points.end ());
    if (compute_normals_)
      normals_->insert (normals_->end (), projected_points_normals.begin (), projected_points_normals.end ());
  }

 
  
  // For the voxel grid upsampling method, generate the voxel grid and dilate it
  // Then, project the newly obtained points to the MLS surface
  if (upsample_method_ == VOXEL_GRID_DILATION)
  {
    MLSVoxelGrid voxel_grid (input_, indices_, voxel_size_);
    
    for (int iteration = 0; iteration < dilation_iteration_num_; ++iteration)
      voxel_grid.dilate ();
    
    
    BOOST_FOREACH (typename MLSVoxelGrid::HashMap::value_type voxel, voxel_grid.voxel_grid_)
    {
      // Get 3D position of point
      Eigen::Vector3f pos;
      voxel_grid.getPosition (voxel.first, pos);

      PointInT p;
      p.x = pos[0];
      p.y = pos[1];
      p.z = pos[2];

      std::vector<int> nn_indices;
      std::vector<float> nn_dists;
      tree_->nearestKSearch (p, 1, nn_indices, nn_dists);
      int input_index = nn_indices.front ();

      // If the closest point did not have a valid MLS fitting result
      // OR if it is too far away from the sampled point
      if (mls_results_[input_index].valid == false)
        continue;
      
      Eigen::Vector3f add_point = p.getVector3fMap (),
                      input_point = input_->points[input_index].getVector3fMap ();
      
      Eigen::Vector3d aux = mls_results_[input_index].u;
      Eigen::Vector3f u = aux.cast<float> ();
      aux = mls_results_[input_index].v;
      Eigen::Vector3f v = aux.cast<float> ();
      
      float u_disp = (add_point - input_point).dot (u),
            v_disp = (add_point - input_point).dot (v);
      
      PointOutT result_point;
      pcl::Normal result_normal;
      projectPointToMLSSurface (u_disp, v_disp,
                                mls_results_[input_index].u, mls_results_[input_index].v,
                                mls_results_[input_index].plane_normal,
                                mls_results_[input_index].curvature,
                                input_point,
                                mls_results_[input_index].c_vec,
                                mls_results_[input_index].num_neighbors,
                                result_point, result_normal);
      
      float d_before = (pos - input_point).norm (),
            d_after = (result_point.getVector3fMap () - input_point). norm();
      if (d_after > d_before)
        continue;

      output.push_back (result_point);
      if (compute_normals_)
        normals_->push_back (result_normal);
    }
  }
开发者ID:diegodgs,项目名称:PCL,代码行数:100,代码来源:mls.hpp

示例3: schedule

template <typename PointInT, typename PointOutT> void
pcl::MovingLeastSquaresOMP<PointInT, PointOutT>::performProcessing (PointCloudOut &output)
{
  // Compute the number of coefficients
  nr_coeff_ = (order_ + 1) * (order_ + 2) / 2;

  // (Maximum) number of threads
  unsigned int threads = threads_ == 0 ? 1 : threads_;

  // Create temporaries for each thread in order to avoid synchronization
  typename PointCloudOut::CloudVectorType projected_points (threads);
  typename NormalCloud::CloudVectorType projected_points_normals (threads);
  std::vector<PointIndices> corresponding_input_indices (threads);

  // For all points
#pragma omp parallel for schedule (dynamic,1000) num_threads (threads)
  for (int cp = 0; cp < static_cast<int> (indices_->size ()); ++cp)
  {
    // Allocate enough space to hold the results of nearest neighbor searches
    // \note resize is irrelevant for a radiusSearch ().
    std::vector<int> nn_indices;
    std::vector<float> nn_sqr_dists;

    // Get the initial estimates of point positions and their neighborhoods
    if (this->searchForNeighbors ((*indices_)[cp], nn_indices, nn_sqr_dists))
    {
      // Check the number of nearest neighbors for normal estimation (and later
      // for polynomial fit as well)
      if (nn_indices.size () >= 3)
      {
        // This thread's ID (range 0 to threads-1)
        int tn = omp_get_thread_num ();

        // Size of projected points before computeMLSPointNormal () adds points
        size_t pp_size = projected_points[tn].size ();

        // Get a plane approximating the local surface's tangent and project point onto it
        int index = (*indices_)[cp];
        this->computeMLSPointNormal (index, nn_indices, nn_sqr_dists, projected_points[tn], projected_points_normals[tn], corresponding_input_indices[tn], this->mls_results_[index]);

        // Copy all information from the input cloud to the output points (not doing any interpolation)
        for (size_t pp = pp_size; pp < projected_points[tn].size (); ++pp)
          this->copyMissingFields (input_->points[(*indices_)[cp]], projected_points[tn][pp]);
	    }
	  }
  }


  // Combine all threads' results into the output vectors
  for (unsigned int tn = 0; tn < threads; ++tn)
  {
    output.insert (output.end (), projected_points[tn].begin (), projected_points[tn].end ());
    corresponding_input_indices_->indices.insert (corresponding_input_indices_->indices.end (),
        corresponding_input_indices[tn].indices.begin (), corresponding_input_indices[tn].indices.end ());
    if (compute_normals_)
      normals_->insert (normals_->end (), projected_points_normals[tn].begin (), projected_points_normals[tn].end ());
  }

  // Perform the distinct-cloud or voxel-grid upsampling
  this->performUpsampling (output);
}
开发者ID:Cakem1x,项目名称:pcl,代码行数:61,代码来源:mls.hpp

示例4: voxel_grid

template <typename PointInT, typename PointOutT> void
pcl::MovingLeastSquares<PointInT, PointOutT>::performProcessing (PointCloudOut &output)
{
  // Compute the number of coefficients
  nr_coeff_ = (order_ + 1) * (order_ + 2) / 2;

  // Allocate enough space to hold the results of nearest neighbor searches
  // \note resize is irrelevant for a radiusSearch ().
  std::vector<int> nn_indices;
  std::vector<float> nn_sqr_dists;

  typedef typename pcl::traits::fieldList<typename PointCloudIn::PointType>::type FieldListInput;
  typedef typename pcl::traits::fieldList<typename PointCloudOut::PointType>::type FieldListOutput;

  // For all points
  for (size_t cp = 0; cp < indices_->size (); ++cp)
  {
    // Get the initial estimates of point positions and their neighborhoods
    if (!searchForNeighbors (int (cp), nn_indices, nn_sqr_dists))
      continue;

    // Check the number of nearest neighbors for normal estimation (and later
    // for polynomial fit as well)
    if (nn_indices.size () < 3)
      continue;


    PointCloudOut projected_points;
    NormalCloud projected_points_normals;
    // Get a plane approximating the local surface's tangent and project point onto it
    computeMLSPointNormal (int (cp), *input_, nn_indices, nn_sqr_dists, projected_points, projected_points_normals);


    /// Copy RGB information if available
    float rgb_input;
    bool rgb_exists_input;
    pcl::for_each_type<FieldListInput> (pcl::CopyIfFieldExists<typename PointCloudIn::PointType, float> (
        input_->points[(*indices_)[cp]], "rgb", rgb_exists_input, rgb_input));

    if (rgb_exists_input)
    {
      for (size_t pp = 0; pp < projected_points.size (); ++pp)
        pcl::for_each_type<FieldListOutput> (pcl::SetIfFieldExists<typename PointCloudOut::PointType, float> (
            projected_points.points[pp], "rgb", rgb_input));
    }

    // Append projected points to output
    output.insert (output.end (), projected_points.begin (), projected_points.end ());
    if (compute_normals_)
      normals_->insert (normals_->end (), projected_points_normals.begin (), projected_points_normals.end ());
  }


  if (upsample_method_ == DISTINCT_CLOUD)
  {
    for (size_t dp_i = 0; dp_i < distinct_cloud_->size (); ++dp_i) // dp_i = distinct_point_i
    {
      // Distinct cloud may have nan points, skip them
      if (!pcl_isfinite (distinct_cloud_->points[dp_i].x))
        continue;

      // Get 3D position of point
      //Eigen::Vector3f pos = distinct_cloud_->points[dp_i].getVector3fMap ();
      std::vector<int> nn_indices;
      std::vector<float> nn_dists;
      tree_->nearestKSearch (distinct_cloud_->points[dp_i], 1, nn_indices, nn_dists);
      int input_index = nn_indices.front ();

      // If the closest point did not have a valid MLS fitting result
      // OR if it is too far away from the sampled point
      if (mls_results_[input_index].valid == false)
        continue;

      Eigen::Vector3f add_point = distinct_cloud_->points[dp_i].getVector3fMap (),
                      input_point = input_->points[input_index].getVector3fMap ();

      Eigen::Vector3d aux = mls_results_[input_index].u;
      Eigen::Vector3f u = aux.cast<float> ();
      aux = mls_results_[input_index].v;
      Eigen::Vector3f v = aux.cast<float> ();

      float u_disp = (add_point - input_point).dot (u),
            v_disp = (add_point - input_point).dot (v);

      PointOutT result_point;
      pcl::Normal result_normal;
      projectPointToMLSSurface (u_disp, v_disp,
                                mls_results_[input_index].u, mls_results_[input_index].v,
                                mls_results_[input_index].plane_normal,
                                mls_results_[input_index].curvature,
                                input_point,
                                mls_results_[input_index].c_vec,
                                mls_results_[input_index].num_neighbors,
                                result_point, result_normal);

      /// Copy RGB information if available
      float rgb_input;
      bool rgb_exists_input;
      pcl::for_each_type<FieldListInput> (pcl::CopyIfFieldExists<typename PointCloudIn::PointType, float> (
          input_->points[input_index], "rgb", rgb_exists_input, rgb_input));
//.........这里部分代码省略.........
开发者ID:Bardo91,项目名称:pcl,代码行数:101,代码来源:mls.hpp


注:本文中的PointCloudOut::insert方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。