本文整理汇总了C++中PerformanceCounter::GetElapsedTime方法的典型用法代码示例。如果您正苦于以下问题:C++ PerformanceCounter::GetElapsedTime方法的具体用法?C++ PerformanceCounter::GetElapsedTime怎么用?C++ PerformanceCounter::GetElapsedTime使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PerformanceCounter
的用法示例。
在下文中一共展示了PerformanceCounter::GetElapsedTime方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: DoTimestep
int CentralDifferencesSparse::DoTimestep()
{
PerformanceCounter counterForceAssemblyTime;
forceModel->GetInternalForce(q, internalForces);
for (int i=0; i<r; i++)
internalForces[i] *= internalForceScalingFactor;
counterForceAssemblyTime.StopCounter();
forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();
if (tangentialDampingMode > 0)
if (timestepIndex % tangentialDampingMode == 0)
DecomposeSystemMatrix(); // this routines also updates the damping and system matrices
// update equation is (see WRIGGERS P.: Computational Contact Mechanics. John Wiley & Sons, Ltd., 2002., page 275) :
//
// (M + dt / 2 * C) * q(t+1) = (dt)^2 * (fext(t) - fint(q(t))) + dt / 2 * C * q(t-1) + M * (2q(t) - q(t-1))
//
// (M + dt / 2 * C) * (q(t+1) - q(t)) = (dt)^2 * (fext(t) - fint(q(t))) + dt / 2 * C * (q(t-1) - q(t)) + M * (q(t) - q(t-1))
// fext are the external forces
// fint is the vector of internal forces
// compute rhs = (dt)^2 * (fext - fint(q(t))) + dt / 2 * C * (q(t-1) - q(t)) + M * (q(t) - q(t-1))
// first, compute rhs = M * (q - q_1)
for (int i=0; i<r; i++)
buffer[i] = q[i] - q_1[i];
massMatrix->MultiplyVector(buffer, rhs);
// rhs += dt / 2 * dampingMatrix * (q_{n-1} - q_n)
for (int i=0; i<r; i++)
qdelta[i] = q_1[i] - q[i];
rayleighDampingMatrix->MultiplyVector(qdelta, buffer);
for (int i=0; i<r; i++)
rhs[i] += 0.5 * timestep * buffer[i];
// rhs += dt * dt * (fext - fint(q(t)))
double timestep2 = timestep * timestep;
for (int i=0; i<r; i++)
rhs[i] += timestep2 * (externalForces[i] - internalForces[i]);
// now rhs contains the correct value
RemoveRows(r, rhsConstrained, rhs, numConstrainedDOFs, constrainedDOFs);
PerformanceCounter counterSystemSolveTime;
memset(buffer, 0, sizeof(double) * r);
#ifdef SPOOLES
int info = spoolesSolver->SolveLinearSystem(buffer, rhsConstrained);
char solverString[16] = "SPOOLES";
#endif
#ifdef PARDISO
int info = pardisoSolver->SolveLinearSystem(buffer, rhsConstrained);
char solverString[16] = "PARDISO";
#endif
#ifdef PCG
int info = jacobiPreconditionedCGSolver->SolveLinearSystemWithJacobiPreconditioner(buffer, rhsConstrained, 1e-6, 10000);
if (info > 0)
info = 0;
char solverString[16] = "PCG";
#endif
InsertRows(r, buffer, qdelta, numConstrainedDOFs, constrainedDOFs);
counterSystemSolveTime.StopCounter();
systemSolveTime = counterSystemSolveTime.GetElapsedTime();
if (info != 0)
{
printf("Error: %s sparse solver returned non-zero exit status %d.\n", solverString, (int)info);
return 1;
}
// the new value of q is now in buffer
// update velocity, and previous and current positions
for (int i=0; i<r; i++)
{
q_1[i] = q[i];
qvel[i] = qdelta[i] / timestep;
qaccel[i] = (qvel[i] - qvel_1[i]) / timestep;
qvel_1[i] = qvel[i];
qaccel_1[i] = qaccel[i];
q[i] += qdelta[i];
}
timestepIndex++;
return 0;
}
示例2: DoTimestep
int CentralDifferencesDense::DoTimestep()
{
if (r == 0)
return 0;
// the reduced force interpolation
PerformanceCounter counterForceAssemblyTime;
reducedForceModel->GetInternalForce(q,internalForces);
counterForceAssemblyTime.StopCounter();
forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();
if (plasticfq != NULL)
{
SetTotalForces(internalForces);
for(int i=0; i<r; i++)
internalForces[i] -= plasticfq[i];
}
PerformanceCounter counterSystemSolveTime;
for (int i=0; i<r; i++)
internalForces[i] *= internalForceScalingFactor;
if (tangentialDampingMode)
UpdateLU();
// update equation is:
//
// (massMatrix + dt / 2 * dampingMatrix) * q(t+1) = (dt)^2 * (fr - Rr(q(t))) + dt/2 * dampingMatrix * q(t-1) + massMatrix * (2q(t) - q(t-1))
// LU decomposition of massMatrix + dt / 2 * Dr is available in L,U
// fr = U^T * f are the reduced external forces
// Rr is the vector of reduced internal forces
// update equation follows from Newton's law
// Mu'' = -Cu' - F_int + F_ext
// Mu'' + Cu' + R(u) = F_ext
// R(u) = F_int
// here, F_int is the external loading force necessary to sustain a certain deformation
// it is opposite to the internal forces acting on the body in a given deformation state
// compute rhs = (dt)^2 * (fr - Rr(q(t))) + dt/2 * dampingMatrix * q(t-1) + massMatrix * (2q(t) - q(t-1))
// first, compute rhs = massMatrix * (2*q - q_1)
for (int i=0; i<r; i++)
{
rhs[i] = 0;
for (int j=0; j<r; j++)
rhs[i] += massMatrix[ELT(r,i,j)] * (2 * q[j] - q_1[j]);
}
// rhs += dt / 2 * dampingMatrix * q_{n-1}
for (int i=0; i<r; i++)
for (int j=0; j<r; j++)
rhs[i] += timestep / 2 * dampingMatrix[ELT(r,i,j)] * q_1[j];
// rhs += dt * dt * (fr - Rr(q(t)))
for (int i=0; i<r; i++)
rhs[i] += timestep * timestep * (externalForces[i] - internalForces[i]);
// now rhs contains the correct values
// solve (M~ + dt/2 D~) * qnew = rhs
// use data from the previously computed LU decomposition
char trans='N';
INTEGER nrhs = 1;
INTEGER INFO;
INTEGER R = r;
DGETRS (&trans,&R,&nrhs,LUFactor,&R,IPIV->GetBuf(),rhs,&R,&INFO);
if (INFO != 0)
{
printf("Error: DGETRS returned a non-zero exit code %d.\n", (int)INFO);
return INFO;
}
// the solution qnew is now in rhs
// update velocity
// and update previous and current positions
for (int i=0; i<r; i++)
{
qvel[i] = (rhs[i] - q[i]) / timestep;
q_1[i] = q[i];
q[i] = rhs[i];
}
ProcessPlasticDeformations();
counterSystemSolveTime.StopCounter();
systemSolveTime = counterSystemSolveTime.GetElapsedTime();
return 0;
}
示例3: DoTimestep
int ImplicitNewmarkSparse::DoTimestep()
{
int numIter = 0;
double error0 = 0; // error after the first step
double errorQuotient;
// store current amplitudes and set initial guesses for qaccel, qvel
for(int i=0; i<r; i++)
{
q_1[i] = q[i];
qvel_1[i] = qvel[i];
qaccel_1[i] = qaccel[i];
qaccel[i] = alpha1 * (q[i] - q_1[i]) - alpha2 * qvel_1[i] - alpha3 * qaccel_1[i];
qvel[i] = alpha4 * (q[i] - q_1[i]) + alpha5 * qvel_1[i] + alpha6 * qaccel_1[i];
}
do
{
int i;
/*
printf("q:\n");
for(int i=0; i<r; i++)
printf("%G ", q[i]);
printf("\n");
printf("Internal forces:\n");
for(int i=0; i<r; i++)
printf("%G ", internalForces[i]);
printf("\n");
*/
PerformanceCounter counterForceAssemblyTime;
forceModel->GetForceAndMatrix(q, internalForces, tangentStiffnessMatrix);
counterForceAssemblyTime.StopCounter();
forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();
//tangentStiffnessMatrix->Print();
//tangentStiffnessMatrix->Save("K");
// scale internal forces
for(i=0; i<r; i++)
internalForces[i] *= internalForceScalingFactor;
*tangentStiffnessMatrix *= internalForceScalingFactor;
memset(qresidual, 0, sizeof(double) * r);
if (useStaticSolver)
{
// no operation
}
else
{
// build effective stiffness: add mass matrix and damping matrix to tangentStiffnessMatrix
tangentStiffnessMatrix->ScalarMultiply(dampingStiffnessCoef, rayleighDampingMatrix);
rayleighDampingMatrix->AddSubMatrix(dampingMassCoef, *massMatrix);
rayleighDampingMatrix->ScalarMultiplyAdd(alpha4, tangentStiffnessMatrix);
//*tangentStiffnessMatrix += alpha4 * *rayleighDampingMatrix;
tangentStiffnessMatrix->AddSubMatrix(alpha4, *dampingMatrix, 1);
tangentStiffnessMatrix->AddSubMatrix(alpha1, *massMatrix);
// compute force residual, store it into aux variable qresidual
// qresidual = M * qaccel + C * qvel - externalForces + internalForces
massMatrix->MultiplyVector(qaccel, qresidual);
rayleighDampingMatrix->MultiplyVectorAdd(qvel, qresidual);
dampingMatrix->MultiplyVectorAdd(qvel, qresidual);
}
// add externalForces, internalForces
for(i=0; i<r; i++)
{
qresidual[i] += internalForces[i] - externalForces[i];
qresidual[i] *= -1;
qdelta[i] = qresidual[i];
}
/*
printf("internal forces:\n");
for(int i=0; i<r; i++)
printf("%G ", internalForces[i]);
printf("\n");
printf("external forces:\n");
for(int i=0; i<r; i++)
printf("%G ", externalForces[i]);
printf("\n");
printf("residual:\n");
for(int i=0; i<r; i++)
printf("%G ", -qresidual[i]);
printf("\n");
*/
double error = 0;
//.........这里部分代码省略.........
示例4: main
int main(int argc, char **argv)
{
// Initialize form, sliders and buttons
form = make_window();
performanceCounter.StartCounter(); // init
saveFileTimeCounter.StartCounter(); // init
groundPlane_button->value(groundPlane);
fog_button->value(useFog);
worldAxes_button->value(renderWorldAxes);
frame_slider->value(1);
if (saveScreenToFile == SAVE_CONTINUOUS)
record_button->value(1); // ON
else
record_button->value(0); // OFF
// just do some timing, no special purpose
// because the first data is always not trustable according to experience
performanceCounter.StopCounter();
performanceCounter.GetElapsedTime();
saveFileTimeCounter.StopCounter();
saveFileTimeCounter.GetElapsedTime();
performanceCounter.StartCounter();
// show form, and do initial draw of model
form->show();
glwindow->show(); // glwindow is initialized when the form is built
performanceCounter.StopCounter();
if (argc > 2)
{
char *filename;
filename = argv[1];
if(filename != NULL)
{
//Read skeleton from asf file
pSkeleton = new Skeleton(filename, MOCAP_SCALE);
//Set the rotations for all bones in their local coordinate system to 0
//Set root position to (0, 0, 0)
pSkeleton->setBasePosture();
displayer.LoadSkeleton(pSkeleton);
lastSkeleton++;
}
if (displayer.GetNumSkeletons())
{
filename = argv[2];
if(filename != NULL)
{
//Read motion (.amc) file and create a motion
pMotion = new Motion(filename, MOCAP_SCALE,pSkeleton);
//set sampled motion for display
displayer.LoadMotion(pMotion);
lastMotion++;
//Tell skeleton to perform the first pose ( first posture )
pSkeleton->setPosture(*(displayer.GetSkeletonMotion(0)->GetPosture(0)));
// Set skeleton to perform the first pose ( first posture )
int currentFrames = displayer.GetSkeletonMotion(0)->GetNumFrames();
if (currentFrames > maxFrames)
{
maxFrames = currentFrames;
frame_slider->maximum((double)maxFrames);
}
frame_slider->maximum((double)maxFrames);
currentFrameIndex=0;
} // if(filename != NULL)
}
else
printf("Load a skeleton first.\n");
framesIncrementDoublePrecision = 1.0; // Current frame and frame increment
playButton = ON;
repeatButton = OFF;
groundPlane = ON;
glwindow->redraw();
} // if (argc > 2)
Fl::add_idle(idle);
return Fl::run();
}
示例5: DoTimestep
int ImplicitNewmarkDense::DoTimestep()
{
int numIter = 0;
double error0 = 0; // error after the first step
double errorQuotient;
// store current amplitudes and set initial guesses for qaccel, qvel
// note: these guesses will later be overriden; they are only used to construct the right-hand-side vector (multiplication with M and C)
for(int i=0; i<r; i++)
{
q_1[i] = q[i];
qvel_1[i] = qvel[i];
qaccel_1[i] = qaccel[i];
qaccel[i] = alpha1 * (q[i] - q_1[i]) - alpha2 * qvel_1[i] - alpha3 * qaccel_1[i];
qvel[i] = alpha4 * (q[i] - q_1[i]) + alpha5 * qvel_1[i] + alpha6 * qaccel_1[i];
}
do
{
int i;
PerformanceCounter counterForceAssemblyTime;
reducedForceModel->GetForceAndMatrix(q, internalForces, tangentStiffnessMatrix);
counterForceAssemblyTime.StopCounter();
forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();
// scale internal forces
for(i=0; i<r; i++)
internalForces[i] *= internalForceScalingFactor;
/*
printf("internalForceScalingFactor = %G\n", internalForceScalingFactor);
printf("q:\n");
for(int i=0; i<r; i++)
printf("%G ", q[i]);
printf("\n");
printf("Internal forces:\n");
for(int i=0; i<r; i++)
printf("%G ", internalForces[i]);
printf("\n");
*/
for(i=0; i<r2; i++)
tangentStiffnessMatrix[i] *= internalForceScalingFactor;
for(i=0; i<r2; i++)
tangentStiffnessMatrix[i] += tangentStiffnessMatrixOffset[i];
/*
printf("Tangent stiffness matrix:\n");
for(int i=0; i<r; i++)
{
for(int j=0; j<r; j++)
printf("%.15f ", tangentStiffnessMatrix[r * j + i]);
printf("\n");
}
printf("Tangent stiffness matrix offset:\n");
for(int i=0; i<r; i++)
{
for(int j=0; j<r; j++)
printf("%.15f ", tangentStiffnessMatrixOffset[r * j + i]);
printf("\n");
}
printf("----\n");
*/
//WriteMatrixToDisk_("Kr", r, r, tangentStiffnessMatrix);
//WriteMatrixToDisk_("Mr", r, r, massMatrix);
//exit(1);
memset(qresidual, 0, sizeof(double) * r);
if (useStaticSolver)
{
// no operation
}
else
{
// build effective stiffness: add mass matrix and damping matrix to tangentStiffnessMatrix
for(i=0; i<r2; i++)
{
dampingMatrix[i] = dampingMassCoef * massMatrix[i] + dampingStiffnessCoef * tangentStiffnessMatrix[i];
tangentStiffnessMatrix[i] += alpha4 * dampingMatrix[i];
//tangentStiffnessMatrix[i] += alpha3 * massMatrix[i] + gamma * alpha1 * dampingMatrix[i]; // static Rayleigh damping
// add mass matrix to the effective stiffness matrix
tangentStiffnessMatrix[i] += alpha1 * massMatrix[i];
}
// compute force residual, store it into aux variable qresidual
// qresidual = M * qaccel + C * qvel - externalForces + internalForces
// M * qaccel
cblas_dgemv(CblasColMajor,CblasNoTrans,
r,r,1.0,massMatrix,r,qaccel,1,0.0,qresidual,1);
//.........这里部分代码省略.........
示例6: idle
void idle(void*)
{
if (previousPlayButtonStatus == ON)
{
// it means we should measure the interval between two frames
// if it is too tiny, we should slow down the motion
performanceCounter.StopCounter();
double actualTimeCostOneFrame = performanceCounter.GetElapsedTime(); // in seconds
// time spent on saving the screen in previous time-step should be excluded
if (saveFileTimeCost > 0.0)
actualTimeCostOneFrame -= saveFileTimeCost;
framesIncrementDoublePrecision = actualTimeCostOneFrame * expectedFPS;
}
// start counter at the beginning of the new round
if (playButton == ON)
performanceCounter.StartCounter();
if(rewindButton == ON)
{
currentFrameIndex = 0;
currentFrameIndexDoublePrecision = 0.0;
for (int i = 0; i < displayer.GetNumSkeletons(); i++)
{
if (displayer.GetSkeletonMotion(i) != NULL)
{
Posture * initSkeleton = displayer.GetSkeletonMotion(i)->GetPosture(0);
displayer.GetSkeleton(i)->setPosture(*initSkeleton);
}
}
rewindButton = OFF;
}
// Initialization
saveFileTimeCost = -1.0;
if(playButton == ON)
{
if (saveScreenToFile == SAVE_CONTINUOUS)
{
saveFileTimeCounter.StartCounter();
CreateScreenFilename(SAVE_CONTINUOUS, saveScreenToFileContinuousCount, saveScreenToFileContinuousFilename);
saveScreenshot(640, 480, saveScreenToFileContinuousFilename);
printf("%s is saved to disk.\n", saveScreenToFileContinuousFilename);
saveScreenToFileContinuousCount++;
saveFileTimeCounter.StopCounter();
saveFileTimeCost = saveFileTimeCounter.GetElapsedTime();
}
if (saveScreenToFile == SAVE_CONTINUOUS)
{
currentFrameIndexDoublePrecision += 1.0;
}
else
{
currentFrameIndexDoublePrecision += framesIncrementDoublePrecision;
}
currentFrameIndex = (int)currentFrameIndexDoublePrecision;
if(currentFrameIndex >= maxFrames)
{
if (repeatButton == ON)
{
currentFrameIndex = 0;
currentFrameIndexDoublePrecision = 0.0;
}
else // repeat button is OFF
{
currentFrameIndex = maxFrames - 1;
currentFrameIndexDoublePrecision = currentFrameIndex;
playButton = OFF; // important, especially in "recording" mode
}
}
if (currentFrameIndex < 0)
{
currentFrameIndex = 0;
currentFrameIndexDoublePrecision = 0.0;
}
SetSkeletonsToSpecifiedFrame(currentFrameIndex);
frame_slider->value((double) currentFrameIndex + 1);
} // if(playButton == ON)
if (minusOneButton == ON)
if (displayer.GetNumSkeletons() != 0)
{
currentFrameIndex--;
if (currentFrameIndex < 0)
currentFrameIndex = 0;
frame_slider->value((double) currentFrameIndex + 1);
SetSkeletonsToSpecifiedFrame(currentFrameIndex);
if (saveScreenToFile == SAVE_CONTINUOUS)
{
CreateScreenFilename(SAVE_CONTINUOUS, saveScreenToFileContinuousCount, saveScreenToFileContinuousFilename);
saveScreenshot(640, 480, saveScreenToFileContinuousFilename);
//.........这里部分代码省略.........
示例7: DoTimestep
int VolumeConservingIntegrator::DoTimestep() {
int numIter = 0;
//Error after the first step
double error0 = 0;
double errorQuotient;
// store current amplitudes and set initial guesses for qaccel, qvel
for (int i = 0; i < r; i++) {
qaccel_1[i] = qaccel[i] = 0;
q_1[i] = q[i];
qvel_1[i] = qvel[i];
}
do {
int i;
/*
printf("q:\n");
for(int i=0; i<r; i++)
printf("%G ", q[i]);
printf("\n");
printf("Internal forces:\n");
for(int i=0; i<r; i++)
printf("%G ", internalForces[i]);
printf("\n");
*/
PerformanceCounter counterForceAssemblyTime;
forceModel->GetForceAndMatrix(q, internalForces, tangentStiffnessMatrix);
counterForceAssemblyTime.StopCounter();
forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();
//tangentStiffnessMatrix->Print();
//tangentStiffnessMatrix->Save("K");
//Scale internal forces
for (i = 0; i < r; i++)
internalForces[i] *= internalForceScalingFactor;
*tangentStiffnessMatrix *= internalForceScalingFactor;
memset(qresidual, 0, sizeof(double) * r);
if (useStaticSolver) {
// fint + K * qdelta = fext
// add externalForces, internalForces
for (i = 0; i < r; i++) {
qresidual[i] = externalForces[i] - internalForces[i];
qdelta[i] = qresidual[i];
}
} else {
tangentStiffnessMatrix->ScalarMultiply(dampingStiffnessCoef,
rayleighDampingMatrix);
rayleighDampingMatrix->AddSubMatrix(dampingMassCoef, *massMatrix);
// build effective stiffness:
// Keff = M + h D + h^2 * K
// compute force residual, store it into aux variable qresidual
// qresidual = h * (-D qdot - fint + fext - h * K * qdot))
//add mass matrix and damping matrix to tangentStiffnessMatrix
*tangentStiffnessMatrix *= timestep;
*tangentStiffnessMatrix += *rayleighDampingMatrix;
tangentStiffnessMatrix->AddSubMatrix(1.0, *dampingMatrix, 1); // at this point, tangentStiffnessMatrix = h * K + D
tangentStiffnessMatrix->MultiplyVector(qvel, qresidual);
*tangentStiffnessMatrix *= timestep;
tangentStiffnessMatrix->AddSubMatrix(1.0, *massMatrix);
// add externalForces, internalForces
for (i = 0; i < r; i++) {
qresidual[i] += internalForces[i] - externalForces[i];
qresidual[i] *= -timestep;
qdelta[i] = qresidual[i];
}
}
/*
printf("internal forces:\n");
for(int i=0; i<r; i++)
printf("%G ", internalForces[i]);
printf("\n");
printf("external forces:\n");
for(int i=0; i<r; i++)
printf("%G ", externalForces[i]);
printf("\n");
printf("residual:\n");
for(int i=0; i<r; i++)
printf("%G ", -qresidual[i]);
printf("\n");
*/
double error = 0;
for (i = 0; i < r; i++)
error += qresidual[i] * qresidual[i];
//.........这里部分代码省略.........
示例8: idleFunction
// the "idle" routine; called periodically by GLUT
void idleFunction(void)
{
cpuLoadCounter.StartCounter();
glutSetWindow(windowID);
if (!lockScene)
{
// determine force in case user is pulling on a vertex
if (g_iLeftMouseButton)
{
if (pulledVertex != -1)
{
double forceX = (g_vMousePos[0] - dragStartX);
double forceY = -(g_vMousePos[1] - dragStartY);
double externalForce[3];
camera->CameraVector2WorldVector_OrientationOnly3D(
forceX, forceY, 0, externalForce);
renderingModalMatrix->ProjectSingleVertex(pulledVertex,
externalForce[0], externalForce[1], externalForce[2], fq);
for(int i=0; i<r; i++)
fq[i] = fqBase[i] + deformableObjectCompliance * fq[i];
}
}
else
{
memcpy(fq,fqBase,sizeof(double) * r);
}
// set the reduced external forces
implicitNewmarkDense->SetExternalForces(fq);
// integrate the dynamics via implicit Newmark
for(int i=0; i<substepsPerTimeStep; i++)
{
int code = implicitNewmarkDense->DoTimestep();
if (code != 0)
{
printf("The integrator went unstable. Reduce the timestep, or increase the number of substeps per timestep.\n");
implicitNewmarkDense->ResetToRest();
for(int i=0; i<r; i++)
{
fqBase[i] = 0;
fq[i] = 0;
}
implicitNewmarkDense->SetExternalForces(fq);
explosionFlag = 1;
explosionCounter.StartCounter();
break;
}
/*
printf("q =\n");
double * q = implicitNewmarkDense->Getq();
for(int i=0; i<r; i++)
printf("%G ", q[i]);
printf("\n");
*/
}
memcpy(q, implicitNewmarkDense->Getq(), sizeof(double) * r);
}
if (explosionFlag)
{
explosionCounter.StopCounter();
if (explosionCounter.GetElapsedTime() > 4.0) // the message will appear on screen for 4 seconds
explosionFlag = 0;
}
// compute u=Uq
deformableObjectRenderingMeshReduced->Setq(q);
deformableObjectRenderingMeshReduced->Compute_uUq();
graphicFrame++;
// update title bar information at 4 Hz
titleBarCounter.StopCounter();
double elapsedTime = titleBarCounter.GetElapsedTime();
if (elapsedTime >= 1.0 / 4)
{
titleBarCounter.StartCounter();
fps = graphicFrame / elapsedTime;
// update menu bar
char windowTitle[4096];
sprintf(windowTitle,"%s | Num modes = %d | %.1f Hz | Deformation CPU Load: %d%%", windowTitleBase,
implicitNewmarkDense->GetNumDOFs() , fps, (int)(100 * cpuLoad + 0.5) );
glutSetWindowTitle(windowTitle);
graphicFrame = 0;
if (syncTimeStepWithGraphics)
{
timeStep = 1.0 / fps;
implicitNewmarkDense->SetTimestep(timeStep / substepsPerTimeStep);
//.........这里部分代码省略.........
示例9: DoTimestep
int EulerSparse::DoTimestep()
{
// v_{n+1} = v_n + h * (F_n / m)
// x_{n+1} = x_n + h * v_{n+1}
// store current state
for(int i=0; i<r; i++)
{
q_1[i] = q[i];
qvel_1[i] = qvel[i];
qaccel_1[i] = qaccel[i];
}
PerformanceCounter counterForceAssemblyTime;
forceModel->GetInternalForce(q, internalForces);
counterForceAssemblyTime.StopCounter();
forceAssemblyTime = counterForceAssemblyTime.GetElapsedTime();
// scale internal forces
for(int i=0; i<r; i++)
internalForces[i] *= internalForceScalingFactor;
// damping
double * dampingForces = buffer;
massMatrix->MultiplyVector(qvel, dampingForces);
for(int i=0; i<r; i++)
dampingForces[i] *= dampingMassCoef;
dampingMatrix->MultiplyVectorAdd(qvel, dampingForces);
//printf("C=\n");
//dampingMatrix->Print();
//dampingMatrix->Save("C");
for(int i=0; i<r; i++)
{
// set qresidual = F_n, for a subsequent solve M * qdelta = h * F_n
qresidual[i] = externalForces[i] - internalForces[i] - dampingForces[i];
}
PerformanceCounter counterSystemSolveTime;
// solve: M * qdelta = qresidual
memset(qdelta, 0.0, sizeof(double)*r);
#ifdef PARDISO
int info = pardisoSolver->SolveLinearSystem(qdelta, qresidual);
char solverString[16] = "PARDISO";
#endif
#ifdef SPOOLES
int info = spoolesSolver->SolveLinearSystem(qdelta, qresidual);
char solverString[16] = "SPOOLES";
#endif
#ifdef PCG
int info = jacobiPreconditionedCGSolver->SolveLinearSystemWithJacobiPreconditioner(qdelta, qresidual, 1e-6, 10000);
if (info > 0)
info = 0;
char solverString[16] = "PCG";
#endif
if (info != 0)
{
printf("Error: %s sparse solver returned non-zero exit status %d.\n", solverString, (int)info);
return 1;
}
counterSystemSolveTime.StopCounter();
systemSolveTime = counterSystemSolveTime.GetElapsedTime();
// update state
if (symplectic)
{
for(int i=0; i<r; i++)
{
qvel[i] += timestep * qdelta[i];
q[i] += timestep * qvel[i];
}
}
else
{
for(int i=0; i<r; i++)
{
q[i] += timestep * qvel[i];
qvel[i] += timestep * qdelta[i];
}
}
for(int i=0; i<r; i++)
qaccel[i] = qdelta[i];
// constrain fixed DOFs
for(int i=0; i<numConstrainedDOFs; i++)
q[constrainedDOFs[i]] = qvel[constrainedDOFs[i]] = qaccel[constrainedDOFs[i]] = 0.0;
return 0;
}
示例10: StVKInternalForces
void * MyFrame::LinearModesWorker(
int numDesiredModes,
int * r, double ** frequencies_, double ** modes_ )
{
*r = -1;
// create mass matrix
SparseMatrix * massMatrix;
GenerateMassMatrix::computeMassMatrix(precomputationState.simulationMesh, &massMatrix, true);
// create stiffness matrix
StVKElementABCD * precomputedIntegrals = StVKElementABCDLoader::load(precomputationState.simulationMesh);
StVKInternalForces * internalForces =
new StVKInternalForces(precomputationState.simulationMesh, precomputedIntegrals);
SparseMatrix * stiffnessMatrix;
StVKStiffnessMatrix * stiffnessMatrixClass = new StVKStiffnessMatrix(internalForces);
stiffnessMatrixClass->GetStiffnessMatrixTopology(&stiffnessMatrix);
double * zero = (double*) calloc(3 * precomputationState.simulationMesh->getNumVertices(), sizeof(double));
stiffnessMatrixClass->ComputeStiffnessMatrix(zero, stiffnessMatrix);
free(zero);
delete(precomputedIntegrals);
delete(stiffnessMatrixClass);
delete(internalForces);
// constrain the degrees of freedom
int numConstrainedVertices = (int) (precomputationState.fixedVertices.size());
int * constrainedDOFs = (int*) malloc (sizeof(int) * 3 * numConstrainedVertices);
set<int> :: iterator iter;
int i = 0;
for(iter = precomputationState.fixedVertices.begin(); iter != precomputationState.fixedVertices.end(); iter++)
{
constrainedDOFs[3*i+0] = 3 * (*iter) + 1;
constrainedDOFs[3*i+1] = 3 * (*iter) + 2;
constrainedDOFs[3*i+2] = 3 * (*iter) + 3;
i++;
}
int oneIndexed = 1;
massMatrix->RemoveRowsColumns(
3 * numConstrainedVertices, constrainedDOFs, oneIndexed);
stiffnessMatrix->RemoveRowsColumns(
3 * numConstrainedVertices, constrainedDOFs, oneIndexed);
// call ARPACK
double * frequenciesTemp = (double*) malloc (sizeof(double) * numDesiredModes);
int numRetainedDOFs = stiffnessMatrix->Getn();
double * modesTemp = (double*) malloc
(sizeof(double) * numDesiredModes * numRetainedDOFs);
printf("Computing linear modes using ARPACK: ...\n");
PerformanceCounter ARPACKCounter;
double sigma = -1.0;
int numLinearSolverThreads = wxThread::GetCPUCount();
if (numLinearSolverThreads > 3)
numLinearSolverThreads = 3; // diminished returns in solver beyond 3 threads
//massMatrix->Save("MFactory");
//stiffnessMatrix->Save("KFactory");
ARPACKSolver generalizedEigenvalueProblem;
int nconv = generalizedEigenvalueProblem.SolveGenEigShInv
(stiffnessMatrix, massMatrix,
numDesiredModes, frequenciesTemp,
modesTemp, sigma, numLinearSolverThreads);
ARPACKCounter.StopCounter();
double ARPACKTime = ARPACKCounter.GetElapsedTime();
printf("ARPACK time: %G s.\n", ARPACKTime); fflush(NULL);
if (nconv < numDesiredModes)
{
free(modesTemp);
free(frequenciesTemp);
*r = -3;
free(constrainedDOFs);
delete(massMatrix);
delete(stiffnessMatrix);
return NULL;
}
int n3 = 3 * precomputationState.simulationMesh->getNumVertices();
*frequencies_ = (double*) calloc (numDesiredModes, sizeof(double));
*modes_ = (double*) calloc (numDesiredModes * n3, sizeof(double));
for(int i=0; i<numDesiredModes; i++)
{
// insert zero rows into the computed modes
int oneIndexed = 1;
InsertRows(n3, &modesTemp[numRetainedDOFs*i], &((*modes_)[n3*i]),
3 * numConstrainedVertices, constrainedDOFs, oneIndexed);
}
for(int i=0; i<numDesiredModes; i++)
{
if (frequenciesTemp[i] <= 0)
//.........这里部分代码省略.........