本文整理汇总了C++中PeakSpectrum类的典型用法代码示例。如果您正苦于以下问题:C++ PeakSpectrum类的具体用法?C++ PeakSpectrum怎么用?C++ PeakSpectrum使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PeakSpectrum类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getCIDSpectrumLight_
void CompNovoIdentificationBase::getCIDSpectrumLight_(PeakSpectrum & spec, const String & sequence, DoubleReal prefix, DoubleReal suffix)
{
static DoubleReal h2o_mass = EmpiricalFormula("H2O").getMonoWeight();
Peak1D p;
DoubleReal b_pos(0.0 + prefix);
DoubleReal y_pos(h2o_mass + suffix);
for (Size i = 0; i != sequence.size() - 1; ++i)
{
char aa(sequence[i]);
b_pos += aa_to_weight_[aa];
char aa2(sequence[sequence.size() - i - 1]);
y_pos += aa_to_weight_[aa2];
if (b_pos > min_mz_ && b_pos < max_mz_)
{
p.setPosition(b_pos + Constants::PROTON_MASS_U);
p.setIntensity(1.0f);
spec.push_back(p);
}
if (y_pos > min_mz_ && y_pos < max_mz_)
{
p.setPosition(y_pos + Constants::PROTON_MASS_U);
p.setIntensity(1.0f);
spec.push_back(p);
}
}
spec.sortByPosition();
return;
}
示例2: floor
std::vector<PeakSpectrum> AScore::peakPickingPerWindowsInSpectrum_(PeakSpectrum &real_spectrum) const
{
vector<PeakSpectrum> windows_top10;
double spect_lower_bound = floor(real_spectrum.front().getMZ() / 100) * 100;
double spect_upper_bound = ceil(real_spectrum.back().getMZ() / 100) * 100;
Size number_of_windows = static_cast<Size>(ceil((spect_upper_bound - spect_lower_bound) / 100));
windows_top10.resize(number_of_windows);
PeakSpectrum::Iterator it_current_peak = real_spectrum.begin();
Size window_upper_bound(spect_lower_bound + 100);
for (Size current_window = 0; current_window < number_of_windows; ++current_window)
{
PeakSpectrum real_window;
while (((*it_current_peak).getMZ() <= window_upper_bound) && (it_current_peak < real_spectrum.end()))
{
real_window.push_back(*it_current_peak);
++it_current_peak;
}
real_window.sortByIntensity(true);
for (Size i = 0; (i < 10) & (i < real_window.size()); ++i)
{
windows_top10[current_window].push_back(real_window[i]);
}
window_upper_bound += 100;
}
return windows_top10;
}
示例3: score
double SpectrumAlignmentScore::operator()(const PeakSpectrum & s1, const PeakSpectrum & s2) const
{
const double tolerance = (double)param_.getValue("tolerance");
bool is_relative_tolerance = param_.getValue("is_relative_tolerance").toBool();
bool use_linear_factor = param_.getValue("use_linear_factor").toBool();
bool use_gaussian_factor = param_.getValue("use_gaussian_factor").toBool();
if (use_linear_factor && use_gaussian_factor)
{
cerr << "Warning: SpectrumAlignmentScore, use either 'use_linear_factor' or 'use_gaussian_factor'!" << endl;
}
SpectrumAlignment aligner;
Param p;
p.setValue("tolerance", tolerance);
p.setValue("is_relative_tolerance", (String)param_.getValue("is_relative_tolerance"));
aligner.setParameters(p);
vector<pair<Size, Size> > alignment;
aligner.getSpectrumAlignment(alignment, s1, s2);
double score(0), sum(0), sum1(0), sum2(0);
for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
{
sum1 += it1->getIntensity() * it1->getIntensity();
}
for (PeakSpectrum::ConstIterator it1 = s2.begin(); it1 != s2.end(); ++it1)
{
sum2 += it1->getIntensity() * it1->getIntensity();
}
for (vector<pair<Size, Size> >::const_iterator it = alignment.begin(); it != alignment.end(); ++it)
{
//double factor(0.0);
//factor = (epsilon - fabs(s1[it->first].getPosition()[0] - s2[it->second].getPosition()[0])) / epsilon;
double mz_tolerance(tolerance);
if (is_relative_tolerance)
{
mz_tolerance = mz_tolerance * s1[it->first].getPosition()[0] / 1e6;
}
double mz_difference(fabs(s1[it->first].getPosition()[0] - s2[it->second].getPosition()[0]));
double factor = 1.0;
if (use_linear_factor || use_gaussian_factor)
{
factor = getFactor_(mz_tolerance, mz_difference, use_gaussian_factor);
}
sum += sqrt(s1[it->first].getIntensity() * s2[it->second].getIntensity() * factor);
}
score = sum / (sqrt(sum1 * sum2));
return score;
}
示例4: xCorrelationPrescore
double XQuestScores::xCorrelationPrescore(const PeakSpectrum & spec1, const PeakSpectrum & spec2, double tolerance)
{
// return 0 = no correlation, when one of the spectra is empty
if (spec1.size() == 0 || spec2.size() == 0) {
return 0.0;
}
double maxionsize = std::max(spec1[spec1.size()-1].getMZ(), spec2[spec2.size()-1].getMZ());
Int table_size = ceil(maxionsize / tolerance)+1;
std::vector< double > ion_table1(table_size, 0);
std::vector< double > ion_table2(table_size, 0);
// Build tables of the same size, each bin has the size of the tolerance
for (Size i = 0; i < spec1.size(); ++i)
{
Size pos = static_cast<Size>(ceil(spec1[i].getMZ() / tolerance));
ion_table1[pos] = 1;
}
for (Size i = 0; i < spec2.size(); ++i)
{
Size pos =static_cast<Size>(ceil(spec2[i].getMZ() / tolerance));
ion_table2[pos] = 1;
}
double dot_product = 0.0;
for (Size i = 0; i < ion_table1.size(); ++i)
{
dot_product += ion_table1[i] * ion_table2[i];
}
// determine the smaller spectrum and normalize by the number of peaks in it
double peaks = std::min(spec1.size(), spec2.size());
return dot_product / peaks;
}
示例5: it
void SuffixArrayPeptideFinder::getCandidates(vector<vector<pair<SuffixArrayPeptideFinder::FASTAEntry, String> > >& candidates, const String& DTA_file)
{
DTAFile dta_file;
PeakSpectrum s;
dta_file.load(DTA_file, s);
s.sortByPosition();
PeakSpectrum::ConstIterator it(s.begin());
vector<double> spec;
for (; it != s.end(); ++it)
{
spec.push_back(it->getPosition()[0]);
}
const vector<double> specc(spec);
getCandidates(candidates, specc);
return;
}
示例6:
map<Size, PeakSpectrum > PScore::calculatePeakLevelSpectra(const PeakSpectrum& spec, const vector<Size>& ranks, Size min_level, Size max_level)
{
map<Size, MSSpectrum<Peak1D> > peak_level_spectra;
if (spec.empty()) return peak_level_spectra;
// loop over all peaks and associated (zero-based) ranks
for (Size i = 0; i != ranks.size(); ++i)
{
// start at the highest (less restrictive) level
for (int j = static_cast<int>(max_level); j >= static_cast<int>(min_level); --j)
{
// if the current peak is annotated to have lower or equal rank then allowed for this peak level add it
if (static_cast<int>(ranks[i]) <= j)
{
peak_level_spectra[j].push_back(spec[i]);
}
else
{
// if the current peak has higher rank than the current level then all it is also to high for the lower levels
break;
}
}
}
return peak_level_spectra;
}
示例7: copy
void CompNovoIdentificationBase::windowMower_(PeakSpectrum & spec, DoubleReal windowsize, Size no_peaks)
{
PeakSpectrum copy(spec);
vector<Peak1D> to_be_deleted;
for (Size i = 0; i < spec.size(); ++i)
{
PeakSpectrum sub_spec;
bool end(false);
for (Size j = i; spec[j].getPosition()[0] - spec[i].getPosition()[0] < windowsize; )
{
sub_spec.push_back(spec[j]);
if (++j == spec.size())
{
end = true;
break;
}
}
sub_spec.sortByIntensity(true);
for (Size k = no_peaks; k < sub_spec.size(); ++k)
{
Peak1D p(sub_spec[k]);
to_be_deleted.push_back(p);
}
if (end)
{
break;
}
}
spec.clear(false);
for (PeakSpectrum::ConstIterator it = copy.begin(); it != copy.end(); ++it)
{
if (find(to_be_deleted.begin(), to_be_deleted.end(), *it) == to_be_deleted.end())
{
spec.push_back(*it);
}
}
spec.sortByPosition();
}
示例8: logOccupancyProb
double XQuestScores::logOccupancyProb(const PeakSpectrum& theoretical_spec, const Size matched_size, double fragment_mass_tolerance, bool fragment_mass_tolerance_unit_ppm)
{
using boost::math::binomial;
Size theo_size = theoretical_spec.size();
if (matched_size < 1 || theo_size < 1)
{
return 0;
}
double range;
double used_tolerance;
if (fragment_mass_tolerance_unit_ppm)
{
range = std::log(theoretical_spec.back().getMZ()) - std::log(theoretical_spec[0].getMZ());
used_tolerance = fragment_mass_tolerance / 1e6;
}
else
{
range = theoretical_spec.back().getMZ() - theoretical_spec[0].getMZ();
used_tolerance = fragment_mass_tolerance;
}
// A priori probability of a random match given info about the theoretical spectrum
double a_priori_p = 0;
a_priori_p = 1 - pow(1 - 2 * used_tolerance / range, static_cast<double>(theo_size));
double log_occu_prob = 0;
binomial flip(theo_size, a_priori_p);
// min double number to avoid 0 values, causing scores with the value "inf"
log_occu_prob = -log(1 - cdf(flip, matched_size) + std::numeric_limits<double>::min());
// score lower than 0 does not make sense, but can happen, if cfd = 0, then -log( 1 + <double>::min() ) < 0
if (log_occu_prob >= 0.0)
{
return log_occu_prob;
}
else // underflow warning?
{
return 0;
}
}
示例9: results
std::vector< double > XQuestScores::xCorrelation(const PeakSpectrum & spec1, const PeakSpectrum & spec2, Int maxshift, double tolerance)
{
// generate vector of results, filled with zeroes
std::vector< double > results(maxshift * 2 + 1, 0);
// return 0 = no correlation, when one of the spectra is empty
if (spec1.size() == 0 || spec2.size() == 0) {
return results;
}
double maxionsize = std::max(spec1[spec1.size()-1].getMZ(), spec2[spec2.size()-1].getMZ());
Int table_size = ceil(maxionsize / tolerance)+1;
std::vector< double > ion_table1(table_size, 0);
std::vector< double > ion_table2(table_size, 0);
// Build tables of the same size, each bin has the size of the tolerance
for (Size i = 0; i < spec1.size(); ++i)
{
Size pos = static_cast<Size>(ceil(spec1[i].getMZ() / tolerance));
ion_table1[pos] = 10.0;
}
for (Size i = 0; i < spec2.size(); ++i)
{
Size pos =static_cast<Size>(ceil(spec2[i].getMZ() / tolerance));
ion_table2[pos] = 10.0;
}
// Compute means
double mean1 = (std::accumulate(ion_table1.begin(), ion_table1.end(), 0.0)) / table_size;
double mean2 = (std::accumulate(ion_table2.begin(), ion_table2.end(), 0.0)) / table_size;
// Compute denominator
double s1 = 0;
double s2 = 0;
for (Int i = 0; i < table_size; ++i)
{
s1 += pow((ion_table1[i] - mean1), 2);
s2 += pow((ion_table2[i] - mean2), 2);
}
double denom = sqrt(s1 * s2);
// Calculate correlation for each shift
for (Int shift = -maxshift; shift <= maxshift; ++shift)
{
double s = 0;
for (Int i = 0; i < table_size; ++i)
{
Int j = i + shift;
if ( (j >= 0) && (j < table_size))
{
s += (ion_table1[i] - mean1) * (ion_table2[j] - mean2);
}
}
if (denom > 0)
{
results[shift + maxshift] = s / denom;
}
}
return results;
}
示例10: SteinScottImproveScore
/**
@brief Similarity pairwise score
This function return the similarity score of two spectra based on SteinScott.
@param s1 const PeakSpectrum Spectrum 1
@param s2 const PeakSpectrum Spectrum 2
@see SteinScottImproveScore()
*/
double SteinScottImproveScore::operator()(const PeakSpectrum & s1, const PeakSpectrum & s2) const
{
const double epsilon = (double)param_.getValue("tolerance");
const double constant = epsilon / 10000;
//const double c(0.0004);
double score(0), sum(0), sum1(0), sum2(0), sum3(0), sum4(0);
/* std::cout << s1 << std::endl;
std::cout << std::endl;
std::cout << s2 << std::endl;*/
for (PeakSpectrum::ConstIterator it1 = s1.begin(); it1 != s1.end(); ++it1)
{
double temp = it1->getIntensity();
sum1 += temp * temp;
sum3 += temp;
}
for (PeakSpectrum::ConstIterator it1 = s2.begin(); it1 != s2.end(); ++it1)
{
double temp = it1->getIntensity();
sum2 += temp * temp;
sum4 += temp;
}
double z = constant * (sum3 * sum4);
Size j_left(0);
for (Size i = 0; i != s1.size(); ++i)
{
for (Size j = j_left; j != s2.size(); ++j)
{
double pos1(s1[i].getMZ()), pos2(s2[j].getMZ());
if (std::abs(pos1 - pos2) <= 2 * epsilon)
{
sum += s1[i].getIntensity() * s2[j].getIntensity();
}
else
{
if (pos2 > pos1)
{
break;
}
else
{
j_left = j;
}
}
}
}
//std::cout<< sum << " Sum " << z << " z " << std::endl;
score = (sum - z) / (std::sqrt((sum1 * sum2)));
// std::cout<<score<< " score" << std::endl;
if (score < (float)param_.getValue("threshold"))
{
score = 0;
}
return score;
}
示例11: matchOddsScore
double XQuestScores::matchOddsScore(const PeakSpectrum& theoretical_spec, const Size matched_size, double fragment_mass_tolerance, bool fragment_mass_tolerance_unit_ppm, bool is_xlink_spectrum, Size n_charges)
{
using boost::math::binomial;
Size theo_size = theoretical_spec.size();
if (matched_size < 1 || theo_size < 1)
{
return 0;
}
double range = theoretical_spec[theo_size-1].getMZ() - theoretical_spec[0].getMZ();
// Compute fragment tolerance in Da for the mean of MZ values, if tolerance in ppm (rough approximation)
double mean = 0.0;
for (Size i = 0; i < theo_size; ++i)
{
mean += theoretical_spec[i].getMZ();
}
mean = mean / theo_size;
double tolerance_Th = fragment_mass_tolerance_unit_ppm ? mean * 1e-6 * fragment_mass_tolerance : fragment_mass_tolerance;
// A priori probability of a random match given info about the theoretical spectrum
double a_priori_p = 0;
if (is_xlink_spectrum)
{
a_priori_p = (1 - ( pow( (1 - 2 * tolerance_Th / (0.5 * range)), (static_cast<double>(theo_size) / static_cast<double>(n_charges)))));
}
else
{
a_priori_p = (1 - ( pow( (1 - 2 * tolerance_Th / (0.5 * range)), static_cast<int>(theo_size))));
}
double match_odds = 0;
binomial flip(theo_size, a_priori_p);
// min double number to avoid 0 values, causing scores with the value "inf"
match_odds = -log(1 - cdf(flip, matched_size) + std::numeric_limits<double>::min());
// score lower than 0 does not make sense, but can happen if cfd = 0, -log( 1 + min() ) < 0
if (match_odds >= 0.0)
{
return match_odds;
}
else
{
return 0;
}
}
示例12: score
// s1 should be the original spectrum
DoubleReal CompNovoIdentificationBase::compareSpectra_(const PeakSpectrum & s1, const PeakSpectrum & s2)
{
DoubleReal score(0.0);
PeakSpectrum::ConstIterator it1 = s1.begin();
PeakSpectrum::ConstIterator it2 = s2.begin();
Size num_matches(0);
while (it1 != s1.end() && it2 != s2.end())
{
DoubleReal pos1(it1->getPosition()[0]), pos2(it2->getPosition()[0]);
if (fabs(pos1 - pos2) < fragment_mass_tolerance_)
{
score += it1->getIntensity();
++num_matches;
}
if (pos1 <= pos2)
{
++it1;
}
else
{
++it2;
}
}
if (num_matches == 0)
{
return 0;
}
score /= sqrt((DoubleReal)num_matches);
return score;
}
示例13: numberOfMatchedIons_
Size AScore::numberOfMatchedIons_(const PeakSpectrum & th, const PeakSpectrum & window, Size depth, double fragment_mass_tolerance, bool fragment_mass_tolerance_ppm) const
{
PeakSpectrum window_reduced = window;
if (window_reduced.size() > depth)
{
window_reduced.resize(depth);
}
window_reduced.sortByPosition();
Size n = 0;
for (Size i = 0; i < th.size(); ++i)
{
Size nearest_peak = -1;
try
{
nearest_peak = window_reduced.findNearest(th[i].getMZ());
}
catch (Exception::Precondition) {}
if (nearest_peak < window_reduced.size())
{
double window_mz = window_reduced[nearest_peak].getMZ();
double error = abs(window_mz - th[i].getMZ());
if (fragment_mass_tolerance_ppm)
{
error = error / window_mz * 1e6;
}
if (error < fragment_mass_tolerance)
{
++n;
}
}
}
return n;
}
示例14: max_isotope_to_score
void CompNovoIonScoring::scoreETDFeatures_(Size /*charge*/, double precursor_weight, Map<double, IonScore> & ion_scores, const PeakSpectrum & CID_spec, const PeakSpectrum & ETD_spec)
{
//double fragment_mass_tolerance((double)param_.getValue("fragment_mass_tolerance"));
Size max_isotope_to_score(param_.getValue("max_isotope_to_score"));
for (PeakSpectrum::ConstIterator it1 = CID_spec.begin(); it1 != CID_spec.end(); ++it1)
{
double pos1(it1->getPosition()[0]);
double b_sum(0.0), y_sum(0.0);
// score a-ions
for (PeakSpectrum::ConstIterator it2 = CID_spec.begin(); it2 != CID_spec.end(); ++it2)
{
double pos2(it2->getPosition()[0]);
if (fabs(pos1 - pos2 - 28.0) < fragment_mass_tolerance_)
{
double factor((fragment_mass_tolerance_ - fabs(pos1 - pos2 - 28.0)) / fragment_mass_tolerance_);
#ifdef SCORE_ETDFEATURES_DEBUG
cerr << "scoreETDFeatures: found a-ion " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << b_sum << " -> ";
#endif
b_sum += it2->getIntensity() * factor;
#ifdef SCORE_ETDFEATURES_DEBUG
cerr << endl;
#endif
}
}
for (PeakSpectrum::ConstIterator it2 = ETD_spec.begin(); it2 != ETD_spec.end(); ++it2)
{
double pos2(it2->getPosition()[0]);
// check if pos2 is precursor doubly charged, which has not fragmented
double pre_diff_lower = (precursor_weight + Constants::PROTON_MASS_U) / 2.0 - fragment_mass_tolerance_;
double pre_diff_upper = (precursor_weight + 4.0 * Constants::PROTON_MASS_U) / 2.0 + fragment_mass_tolerance_;
if (pos2 > pre_diff_lower && pos2 < pre_diff_upper)
{
#ifdef SCORE_ETDFEATURES_DEBUG
cerr << "scoreETDFeatures: pre-range: " << pos2 << " is in precursor peak range: " << pre_diff_lower << " <-> " << pre_diff_upper << endl;
#endif
continue;
}
//double diff(pos2 - pos1);
// pos1 is CID ion; pos2 is ETD ion
// pos1 b-ion, pos2 c-ion
if (fabs(pos1 + 17.0 - pos2) < fragment_mass_tolerance_)
{
// now test if the ETD peak has "isotope" pattern
double factor((fragment_mass_tolerance_ - fabs(pos1 + 17.0 - pos2)) / fragment_mass_tolerance_);
#ifdef SCORE_ETDFEATURES_DEBUG
cerr << "scoreETDFeatures: is b-ion: " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << b_sum << " -> ";
#endif
vector<double> iso_pattern;
iso_pattern.push_back(it1->getIntensity());
double actual_pos = it1->getPosition()[0];
for (PeakSpectrum::ConstIterator it3 = it2; it3 != ETD_spec.end(); ++it3)
{
double it3_pos(it3->getPosition()[0]);
if (fabs(fabs(actual_pos - it3_pos) - Constants::NEUTRON_MASS_U) < fragment_mass_tolerance_)
{
iso_pattern.push_back(it3->getIntensity());
actual_pos = it3_pos;
}
if (iso_pattern.size() == max_isotope_to_score)
{
break;
}
}
if (ion_scores[it1->getPosition()[0]].is_isotope_1_mono != -1)
{
b_sum += it2->getIntensity() * iso_pattern.size() * factor;
}
#ifdef SCORE_ETDFEATURES_DEBUG
cerr << b_sum << endl;
#endif
}
// pos1 z-ion, pos2 y-ion
if (fabs(pos2 + 16.0 - pos1) < fragment_mass_tolerance_)
{
double factor((fragment_mass_tolerance_ - fabs(pos2 + 16.0 - pos1)) / fragment_mass_tolerance_);
// now test if the ETD peak has "isotope" pattern
#ifdef SCORE_ETDFEATURES_DEBUG
cerr << "scoreETDFeatures: is y-ion: " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << y_sum << " -> ";
#endif
vector<double> iso_pattern;
iso_pattern.push_back(it1->getIntensity());
double actual_pos = it1->getPosition()[0];
for (PeakSpectrum::ConstIterator it3 = it2; it3 != ETD_spec.end(); ++it3)
{
double it3_pos(it3->getPosition()[0]);
if (fabs(fabs(actual_pos - it3_pos) - Constants::NEUTRON_MASS_U) < fragment_mass_tolerance_)
{
iso_pattern.push_back(it3->getIntensity());
actual_pos = it3_pos;
}
//.........这里部分代码省略.........
示例15: wit_score
void CompNovoIonScoring::scoreWitnessSet_(Size charge, double precursor_weight, Map<double, IonScore> & ion_scores, const PeakSpectrum & CID_spec)
{
vector<double> diffs;
//diffs.push_back(28.0);
diffs.push_back(17.0);
diffs.push_back(18.0);
// witnesses of CID spec (diffs)
for (PeakSpectrum::ConstIterator it1 = CID_spec.begin(); it1 != CID_spec.end(); ++it1)
{
//Size num_wit(0);
double wit_score(0.0);
double pos1(it1->getPosition()[0]);
wit_score += it1->getIntensity();
for (PeakSpectrum::ConstIterator it2 = CID_spec.begin(); it2 != CID_spec.end(); ++it2)
{
double pos2(it2->getPosition()[0]);
// direct ++
if (charge > 1)
{
if (fabs(pos2 * 2 - Constants::PROTON_MASS_U - pos1) < fragment_mass_tolerance_)
{
double factor((fragment_mass_tolerance_ - fabs(pos2 * 2 - Constants::PROTON_MASS_U - pos1)) / fragment_mass_tolerance_);
// pos1 is ion, pos2 is ++ion
#ifdef SCORE_WITNESSSET_DEBUG
cerr << "scoreWitnessSet: ++ion " << pos1 << " " << pos2 << " (factor=" << factor << ") " << wit_score << " -> ";
#endif
if (ion_scores[it2->getPosition()[0]].s_isotope_pattern_2 < 0.2)
{
wit_score += it2->getIntensity() * /* 0.2 */ factor;
}
else
{
wit_score += it2->getIntensity() * ion_scores[it2->getPosition()[0]].s_isotope_pattern_2 * factor;
}
#ifdef SCORE_WITNESSSET_DEBUG
cerr << wit_score << endl;
#endif
}
}
// diffs?
for (vector<double>::const_iterator it = diffs.begin(); it != diffs.end(); ++it)
{
// pos1 is ion, pos2 loss peak
if (fabs(pos1 - pos2 - *it) < fragment_mass_tolerance_)
{
double factor((fragment_mass_tolerance_ - fabs(pos1 - pos2 - *it)) / fragment_mass_tolerance_);
#ifdef SCORE_WITNESSSET_DEBUG
cerr << "scoreWitnessSet: diff " << pos1 << " (" << pos2 << ") " << *it << " (factor=" << factor << ") " << wit_score << " -> ";
#endif
wit_score += it2->getIntensity() /* / 5.0*/ * factor;
#ifdef SCORE_WITNESSSET_DEBUG
cerr << wit_score << endl;
#endif
}
}
// is there a b-ion?; pos1 is ion, pos2 complementary ion
if (fabs(pos1 + pos2 - 1 * Constants::PROTON_MASS_U - precursor_weight) < fragment_mass_tolerance_)
{
double factor((fragment_mass_tolerance_ - fabs(pos1 + pos2 - Constants::PROTON_MASS_U - precursor_weight)) / fragment_mass_tolerance_);
/*factor *= 0.2;*/
#ifdef SCORE_WITNESSSET_DEBUG
cerr << "scoreWitnessSet: complementary " << pos1 << " (" << pos2 << ") (factor=" << factor << ") " << wit_score << " -> ";
#endif
// found complementary ion
if (ion_scores[it2->getPosition()[0]].s_isotope_pattern_1 < 0.5 || ion_scores[it2->getPosition()[0]].is_isotope_1_mono != 1)
{
wit_score += it2->getIntensity() /* * 0.5*/ * factor;
}
else
{
wit_score += it2->getIntensity() * ion_scores[it2->getPosition()[0]].s_isotope_pattern_1 * factor;
}
#ifdef SCORE_WITNESSSET_DEBUG
cerr << wit_score << endl;
#endif
if (ion_scores[it2->getPosition()[0]].s_bion != 0)
{
#ifdef SCORE_WITNESSSET_DEBUG
cerr << "scoreWitnessSet: complementary is b-ion " << pos1 << "(" << pos2 << ")" << wit_score << " -> ";
#endif
wit_score += ion_scores[it2->getPosition()[0]].s_bion * factor;
#ifdef SCORE_WITNESSSET_DEBUG
cerr << wit_score << endl;
#endif
}
}
}
// isotope pattern ok?
if (ion_scores[it1->getPosition()[0]].s_isotope_pattern_1 > 0 && ion_scores[it1->getPosition()[0]].is_isotope_1_mono == 1)
{
#ifdef SCORE_WITNESSSET_DEBUG
cerr << "scoreWitnessSet: isotope pattern: " << pos1 << " " << wit_score << " -> ";
#endif
//.........这里部分代码省略.........