当前位置: 首页>>代码示例>>C++>>正文


C++ ParameterList::hasParameter方法代码示例

本文整理汇总了C++中ParameterList::hasParameter方法的典型用法代码示例。如果您正苦于以下问题:C++ ParameterList::hasParameter方法的具体用法?C++ ParameterList::hasParameter怎么用?C++ ParameterList::hasParameter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ParameterList的用法示例。


在下文中一共展示了ParameterList::hasParameter方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: set_parameter

void Alignment::set_parameter(string name, double value) {
    ParameterList pl;
    enum class THING{LIKELIHOOD, RATES, MODEL};  // The 'thing' to update after setting parameter
    THING thing;
    if (likelihood) {
        pl = likelihood->getParameters();
        thing = THING::LIKELIHOOD;
    }
    else if (rates) {
        pl = rates->getIndependentParameters();
        thing = THING::RATES;
    }
    else if (model) {
        pl = model->getIndependentParameters();
        thing = THING::MODEL;
    }
    else {
        throw Exception("Could not retrieve parameter list");
    }
    if (pl.hasParameter(name)) {
        pl.setParameterValue(name, value);
        switch (thing) {
        case THING::LIKELIHOOD:
            likelihood->setParametersValues(pl);
            break;

        case THING::RATES:
            rates->setParametersValues(pl);
            rates->fireParameterChanged(pl);
            break;

        case THING::MODEL:
            model->setParametersValues(pl);
            model->fireParameterChanged(pl);
            break;
        }
    }
    else {
        throw Exception("Could not find that parameter");
    }
}
开发者ID:kgori,项目名称:bpp,代码行数:41,代码来源:Alignment.cpp

示例2: get_parameter

double Alignment::get_parameter(string name) {
    ParameterList pl;
    if (likelihood) {
        pl = likelihood->getParameters();
    }
    else if (rates) {
        pl = rates->getIndependentParameters();
    }
    else if (model) {
        pl = model->getIndependentParameters();
    }
    else {
        throw Exception("Could not retrieve parameter list");
    }
    if (pl.hasParameter(name)) {
        return pl.getParameterValue(name);
    }
    else {
        throw Exception("Could not find that parameter");
    }
}
开发者ID:kgori,项目名称:bpp,代码行数:21,代码来源:Alignment.cpp

示例3: updateDerivatives

void ThreePointsNumericalDerivative::updateDerivatives(const ParameterList & parameters)
throw (ParameterNotFoundException, ConstraintException)
{
  if(computeD1_ && variables_.size() > 0)
  {
    if(function1_) function1_->enableFirstOrderDerivatives(false);
    if(function2_) function2_->enableSecondOrderDerivatives(false);
    function_->setParameters(parameters);
    f2_ = function_->getValue();
    string lastVar;
    ParameterList p;
    for(unsigned int i = 0; i < variables_.size(); i++)
    {
      string var = variables_[i];
      if (!parameters.hasParameter(var)) continue;
      if(i > 0)
      {
        vector<string> vars(2);
        vars[0] = var;
        vars[1] = lastVar;
        p = parameters.subList(vars);
      }
      else
      {
        p = parameters.subList(var);
      }
      lastVar = var;
      double value = function_->getParameterValue(var);
      double h = (1. + std::abs(value)) * h_; 
      //Compute one other point:
      try
      {
        p[0]->setValue(value - h);
        function_->setParameters(p); //also reset previous parameter...
        p = p.subList(0);
        f1_ = function_->getValue();
        try
        {
          p[0]->setValue(value + h);
          function_->setParameters(p);
          f3_ = function_->getValue();
          //No limit raised, use central approximation:
          der1_[i] = (-f1_ + f3_) / (2.*h);
          der2_[i] = (f1_ -2*f2_ + f3_) / (h*h);
        }
        catch(ConstraintException & ce)
        {
          //Right limit raised, use backward approximation:
          p[0]->setValue(value - h);
          function_->setParameters(p);
          f1_ = function_->getValue();
          p[0]->setValue(value - 2*h);
          function_->setParameters(p);
          f3_ = function_->getValue();
          der1_[i] = (f2_ - f1_) / h;
          der2_[i] = (f2_ - 2.*f1_ + f3_) / (h*h);        
        }
      }
      catch(ConstraintException & ce)
      {
        //Left limit raised, use forward approximation:
        p[0]->setValue(value + h);
        function_->setParameters(p);
        f3_ = function_->getValue();
        p[0]->setValue(value + 2*h);
        function_->setParameters(p);
        f1_ = function_->getValue();
        der1_[i] = (f3_ - f2_) / h;
        der2_[i] = (f1_ - 2.*f3_ + f2_) / (h*h);
      }
    }

    if(computeCrossD2_)
    {
      string lastVar1, lastVar2;
      for(unsigned int i = 0; i < variables_.size(); i++)
      {
        string var1 = variables_[i];
        if(!parameters.hasParameter(var1)) continue;
        for(unsigned int j = 0; j < variables_.size(); j++)
        {
          if(j==i)
          {
            crossDer2_(i,j) = der2_[i];
            continue;
          }
          string var2 = variables_[j];
          if (!parameters.hasParameter(var2)) continue;
        
          vector<string> vars(2);
          vars[0] = var1;
          vars[1] = var2;
          if(i > 0 && j > 0)
          {
            if(lastVar1 != var1 && lastVar1 != var2) vars.push_back(lastVar1);
            if(lastVar2 != var1 && lastVar2 != var2) vars.push_back(lastVar2);
          }
          p = parameters.subList(vars);
        
          double value1 = function_->getParameterValue(var1);
//.........这里部分代码省略.........
开发者ID:pjotrp,项目名称:bio---numcalc,代码行数:101,代码来源:ThreePointsNumericalDerivative.cpp

示例4: updateDerivatives

void ThreePointsNumericalDerivative::updateDerivatives(const ParameterList parameters)
throw (ParameterNotFoundException, ConstraintException)
{
  if (computeD1_ && variables_.size() > 0)
  {
    if (function1_)
      function1_->enableFirstOrderDerivatives(false);
    if (function2_)
      function2_->enableSecondOrderDerivatives(false);
    function_->setParameters(parameters);
    f2_ = function_->getValue();
    if ((abs(f2_) >= NumConstants::VERY_BIG()) || std::isnan(f2_))
    {
      for (size_t i = 0; i < variables_.size(); ++i)
      {
        der1_[i] = log(-1);
        der2_[i] = log(-1);
      }
      return;
    }

    string lastVar;
    bool functionChanged = false;
    ParameterList p;
    bool start = true;
    for (size_t i = 0; i < variables_.size(); ++i)
    {
      string var = variables_[i];
      if (!parameters.hasParameter(var))
        continue;
      if (!start)
      {
        vector<string> vars(2);
        vars[0] = var;
        vars[1] = lastVar;
        p = parameters.subList(vars);
      }
      else
      {
        p = parameters.subList(var);
        start = false;
      }
      lastVar = var;
      functionChanged = true;
      double value = function_->getParameterValue(var);
      double h = -(1. + std::abs(value)) * h_;
      if (abs(h) < p[0].getPrecision())
        h = h < 0 ? -p[0].getPrecision() : p[0].getPrecision();
      double hf1(0), hf3(0);
      unsigned int nbtry = 0;

      // Compute f1_
      while (hf1 == 0)
      {
        try
        {
          p[0].setValue(value + h);
          function_->setParameters(p); // also reset previous parameter...

          p = p.subList(0);
          f1_ = function_->getValue();
          if ((abs(f1_) >= NumConstants::VERY_BIG()) || std::isnan(f1_))
            throw ConstraintException("f1_ too large", &p[0], f1_);
          else
            hf1 = h;
        }
        catch (ConstraintException& ce)
        {
          if (++nbtry == 10) // no possibility to compute derivatives
            break;
          else if (h < 0)
            h = -h;  // try on the right
          else
            h /= -2;  // try again on the left with smaller interval
        }
      }

      if (hf1 != 0)
      {
        // Compute f3_
        if (h < 0)
          h = -h;  // on the right
        else
          h /= 2;  //  on the left with smaller interval

        nbtry = 0;
        while (hf3 == 0)
        {
          try
          {
            p[0].setValue(value + h);
            function_->setParameters(p); // also reset previous parameter...

            p = p.subList(0);
            f3_ = function_->getValue();
            if ((abs(f3_) >= NumConstants::VERY_BIG()) || std::isnan(f3_))
              throw ConstraintException("f3_ too large", &p[0], f3_);
            else
              hf3 = h;
          }
//.........这里部分代码省略.........
开发者ID:jbloomlab,项目名称:phydms,代码行数:101,代码来源:ThreePointsNumericalDerivative.cpp

示例5: updateDerivatives

void TwoPointsNumericalDerivative::updateDerivatives(const ParameterList parameters)
throw (ParameterNotFoundException, ConstraintException)
{
  if (computeD1_ && variables_.size() > 0)
  {
    if (function1_)
      function1_->enableFirstOrderDerivatives(false);
    if (function2_)
      function2_->enableSecondOrderDerivatives(false);
    function_->setParameters(parameters);
    f1_ = function_->getValue();
    string lastVar;
    bool functionChanged = false;
    bool start = true;
    for (unsigned int i = 0; i < variables_.size(); i++)
    {
      string var = variables_[i];
      if (!parameters.hasParameter(var))
        continue;
      ParameterList p;
      if (!start)
      {
        vector<string> vars(2);
        vars[0] = var;
        vars[1] = lastVar;
        lastVar = var;
        functionChanged = true;
        p = parameters.subList(vars);
      }
      else
      {
        p = parameters.subList(var);
        lastVar = var;
        functionChanged = true;
        start = false;
      }
      double value = function_->getParameterValue(var);
      double h = (1 + std::abs(value)) * h_;
      // Compute one other point:
      try
      {
        p[0].setValue(value + h);
        function_->setParameters(p);
        f2_ = function_->getValue();
      }
      catch (ConstraintException& ce1)
      {
        // Right limit raised, use backward approximation:
        try
        {
          p[0].setValue(value - h);
          function_->setParameters(p);
          f2_ = function_->getValue();
          der1_[i] = (f1_ - f2_) / h;
        }
        catch (ConstraintException& ce2)
        {
          // PB: can't compute derivative, because of a two narrow interval (lower than h)
          throw ce2;
        }
      }
      // No limit raised, use forward approximation:
      der1_[i] = (f2_ - f1_) / h;
    }
    // Reset last parameter and compute analytical derivatives if any:
    if (function1_)
      function1_->enableFirstOrderDerivatives(computeD1_);
    if (functionChanged)
      function_->setParameters(parameters.subList(lastVar));
  }
  else
  {
    // Reset initial value and compute analytical derivatives if any.
    if (function1_)
      function1_->enableFirstOrderDerivatives(computeD1_);
    if (function2_)
      function2_->enableSecondOrderDerivatives(computeD2_);
    // Just in case derivatives are not computed:
    function_->setParameters(parameters);
    f1_ = function_->getValue();
  }
}
开发者ID:jbloomlab,项目名称:phydms,代码行数:82,代码来源:TwoPointsNumericalDerivative.cpp

示例6: main


//.........这里部分代码省略.........
	unsigned int optVerbose = ApplicationTools::getParameter<unsigned int>("optimization.verbose", bppdist.getParams(), 2);
	
	string mhPath = ApplicationTools::getAFilePath("optimization.message_handler", bppdist.getParams(), false, false);
	OutputStream* messenger = 
		(mhPath == "none") ? 0 :
			(mhPath == "std") ? ApplicationTools::message :
				new StlOutputStream(new ofstream(mhPath.c_str(), ios::out));
	ApplicationTools::displayResult("Message handler", mhPath);

	string prPath = ApplicationTools::getAFilePath("optimization.profiler", bppdist.getParams(), false, false);
	OutputStream* profiler = 
		(prPath == "none") ? 0 :
			(prPath == "std") ? ApplicationTools::message :
				new StlOutputStream(new ofstream(prPath.c_str(), ios::out));
	if(profiler) profiler->setPrecision(20);
	ApplicationTools::displayResult("Profiler", prPath);

	// Should I ignore some parameters?
  ParameterList allParameters = model->getParameters();
  allParameters.addParameters(rDist->getParameters());
	ParameterList parametersToIgnore;
  string paramListDesc = ApplicationTools::getStringParameter("optimization.ignore_parameter", bppdist.getParams(), "", "", true, false);
	bool ignoreBrLen = false;
  StringTokenizer st(paramListDesc, ",");
	while (st.hasMoreToken())
  {
		try
    {
      string param = st.nextToken();
      if (param == "BrLen")
        ignoreBrLen = true;
      else
      {
        if (allParameters.hasParameter(param))
        {
          Parameter* p = &allParameters.getParameter(param);
          parametersToIgnore.addParameter(*p);
        }
        else ApplicationTools::displayWarning("Parameter '" + param + "' not found."); 
      }
		} 
    catch (ParameterNotFoundException& pnfe)
    {
			ApplicationTools::displayError("Parameter '" + pnfe.getParameter() + "' not found, and so can't be ignored!");
		}
	}
	
	unsigned int nbEvalMax = ApplicationTools::getParameter<unsigned int>("optimization.max_number_f_eval", bppdist.getParams(), 1000000);
	ApplicationTools::displayResult("Max # ML evaluations", TextTools::toString(nbEvalMax));
	
	double tolerance = ApplicationTools::getDoubleParameter("optimization.tolerance", bppdist.getParams(), .000001);
	ApplicationTools::displayResult("Tolerance", TextTools::toString(tolerance));
	
  //Here it is:
  ofstream warn("warnings", ios::out);
  ApplicationTools::warning = new StlOutputStreamWrapper(&warn);
  tree = OptimizationTools::buildDistanceTree(distEstimation, *distMethod, parametersToIgnore, !ignoreBrLen, type, tolerance, nbEvalMax, profiler, messenger, optVerbose);
  warn.close();
  delete ApplicationTools::warning;
  ApplicationTools::warning = ApplicationTools::message;

  string matrixPath = ApplicationTools::getAFilePath("output.matrix.file", bppdist.getParams(), false, false, "", false);
  if (matrixPath != "none")
  {
    ApplicationTools::displayResult("Output matrix file", matrixPath);
    string matrixFormat = ApplicationTools::getAFilePath("output.matrix.format", bppdist.getParams(), false, false, "", false);
开发者ID:matsen,项目名称:bppsuite,代码行数:67,代码来源:bppDist.cpp


注:本文中的ParameterList::hasParameter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。