本文整理汇总了C++中ParamSet::AddInt方法的典型用法代码示例。如果您正苦于以下问题:C++ ParamSet::AddInt方法的具体用法?C++ ParamSet::AddInt怎么用?C++ ParamSet::AddInt使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ParamSet
的用法示例。
在下文中一共展示了ParamSet::AddInt方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: defineFilm
void LuxRenderer::defineFilm()
{
int width = this->mtlu_renderGlobals->imgWidth;
int height = this->mtlu_renderGlobals->imgHeight;
MString outputPath = this->mtlu_renderGlobals->basePath + "/" + this->mtlu_renderGlobals->imageName + "." + (int)this->mtlu_renderGlobals->currentFrame + ".lxs";
// file path without extension, will be added automatically by the renderer
MString fileName = this->mtlu_renderGlobals->imagePath + "/" + this->mtlu_renderGlobals->imageName + "." + (int)this->mtlu_renderGlobals->currentFrame;
const char *filename = fileName.asChar();
const int xres = width;
const int yres = height;
const bool write_png = true;
const int halttime = this->mtlu_renderGlobals->halttime;
const int haltspp = this->mtlu_renderGlobals->haltspp;
int displayinterval = 3;
ParamSet fp = CreateParamSet();
fp->AddInt("xresolution",&xres);
fp->AddInt("yresolution",&yres);
fp->AddBool("write_png",&write_png);
fp->AddString("filename",&filename);
if( halttime > 0)
fp->AddInt("halttime", &halttime);
if( haltspp > 0)
fp->AddInt("haltspp", &haltspp);
if( displayinterval > 0)
fp->AddInt("displayinterval", &displayinterval);
lux->film("fleximage", boost::get_pointer(fp));
}
示例2: createAreaLightMesh
void LuxRenderer::createAreaLightMesh(mtlu_MayaObject *obj)
{
MString meshName("");
MFnDependencyNode depFn(obj->mobject);
MObject otherSideObj = getOtherSideNode(MString("mtlu_areaLight_geo"), obj->mobject);
if( otherSideObj != MObject::kNullObj)
{
}else{
int indices[6] = {0,1,2,2,3,0};
float floatPointArray[12] = {-1, -1, 0,
-1, 1, 0,
1, 1, 0,
1, -1, 0};
float floatNormalArray[12] = {0,0,-1,
0,0,-1,
0,0,-1,
0,0,-1};
ParamSet triParams = CreateParamSet();
triParams->AddInt("indices", indices, 6);
triParams->AddPoint("P", floatPointArray, 4);
triParams->AddNormal("N", floatNormalArray, 4);
lux->transformBegin();
float fm[16];
MMatrix tm = obj->transformMatrices[0];
setZUp(tm, fm);
this->lux->transform(fm);
this->lux->shape("trianglemesh", boost::get_pointer(triParams));
lux->transformEnd();
}
}
示例3: Refine
void Heightfield::Refine(vector<Reference<Shape> > &refined) const {
int ntris = 2*(nx-1)*(ny-1);
refined.reserve(ntris);
int *verts = new int[3*ntris];
Point *P = new Point[nx*ny];
float *uvs = new float[2*nx*ny];
int nverts = nx*ny;
int x, y;
// Compute heightfield vertex positions
int pos = 0;
for (y = 0; y < ny; ++y) {
for (x = 0; x < nx; ++x) {
P[pos].x = uvs[2*pos] = (float)x / (float)(nx-1);
P[pos].y = uvs[2*pos+1] = (float)y / (float)(ny-1);
P[pos].z = z[pos];
++pos;
}
}
// Fill in heightfield vertex offset array
int *vp = verts;
for (y = 0; y < ny-1; ++y) {
for (x = 0; x < nx-1; ++x) {
#define VERT(x,y) ((x)+(y)*nx)
*vp++ = VERT(x, y);
*vp++ = VERT(x+1, y);
*vp++ = VERT(x+1, y+1);
*vp++ = VERT(x, y);
*vp++ = VERT(x+1, y+1);
*vp++ = VERT(x, y+1);
}
#undef VERT
}
ParamSet paramSet;
paramSet.AddInt("indices", verts, 3*ntris);
paramSet.AddFloat("uv", uvs, 2 * nverts);
paramSet.AddPoint("P", P, nverts);
refined.push_back(CreateTriangleMeshShape(ObjectToWorld, WorldToObject, ReverseOrientation, paramSet));
delete[] P;
delete[] uvs;
delete[] verts;
}
示例4: defineTriangleMesh
//.........这里部分代码省略.........
floatNormalArray[vtxCount * 3] = normals[normalId2].x;
floatNormalArray[vtxCount * 3 + 1] = normals[normalId2].y;
floatNormalArray[vtxCount * 3 + 2] = normals[normalId2].z;
floatUvArray[vtxCount * 2] = uArray[uvId2];
floatUvArray[vtxCount * 2 + 1] = vArray[uvId2];
vtxCount++;
//logger.debug(MString("Vertex count: ") + vtxCount + " maxId " + ((vtxCount - 1) * 3 + 2) + " ptArrayLen " + (numTriangles * 3 * 3));
triangelVtxIdList[triCount * 3] = triCount * 3;
triangelVtxIdList[triCount * 3 + 1] = triCount * 3 + 1;
triangelVtxIdList[triCount * 3 + 2] = triCount * 3 + 2;
triCount++;
}
}
//generatetangents bool Generate tangent space using miktspace, useful if mesh has a normal map that was also baked using miktspace (such as blender or xnormal) false
//subdivscheme string Subdivision algorithm, options are "loop" and "microdisplacement" "loop"
//displacementmap string Name of the texture used for the displacement. Subdivscheme parameter must always be provided, as load-time displacement is handled by the loop-subdivision code. none - optional. (loop subdiv can be used without displacement, microdisplacement will not affect the mesh without a displacement map specified)
//dmscale float Scale of the displacement (for an LDR map, this is the maximum height of the displacement in meter) 0.1
//dmoffset float Offset of the displacement. 0
//dmnormalsmooth bool Smoothing of the normals of the subdivided faces. Only valid for loop subdivision. true
//dmnormalsplit bool Force the mesh to split along breaks in the normal. If a mesh has no normals (flat-shaded) it will rip open on all edges. Only valid for loop subdivision. false
//dmsharpboundary bool Try to preserve mesh boundaries during subdivision. Only valid for loop subdivision. false
//nsubdivlevels integer Number of subdivision levels. This is only recursive for loop subdivision, microdisplacement will need much larger values (such as 50). 0
bool generatetangents = false;
getBool(MString("mtlu_mesh_generatetangents"), meshFn, generatetangents);
int subdivscheme = 0;
const char *subdAlgos[] = {"loop", "microdisplacement"};
getInt(MString("mtlu_mesh_subAlgo"), meshFn, subdivscheme);
const char *subdalgo = subdAlgos[subdivscheme];
float dmscale;
getFloat(MString("mtlu_mesh_dmscale"), meshFn, dmscale);
float dmoffset;
getFloat(MString("mtlu_mesh_dmoffset"), meshFn, dmoffset);
MString displacementmap;
getString(MString("mtlu_mesh_displacementMap"), meshFn, displacementmap);
const char *displacemap = displacementmap.asChar();
bool dmnormalsmooth = true;
getBool(MString("mtlu_mesh_dmnormalsmooth"), meshFn, dmnormalsmooth);
bool dmnormalsplit = false;
getBool(MString("mtlu_mesh_dmnormalsplit"), meshFn, dmnormalsplit);
bool dmsharpboundary = false;
getBool(MString("mtlu_mesh_dmsharpboundary"), meshFn, dmsharpboundary);
int nsubdivlevels = 0;
getInt(MString("mtlu_mesh_subdivlevel"), meshFn, nsubdivlevels);
// a displacment map needs its own texture defintion
MString displacementTextureName = "";
if(displacementmap.length() > 0)
{
ParamSet dmParams = CreateParamSet();
dmParams->AddString("filename", &displacemap);
displacementTextureName = meshFn.name() + "_displacementMap";
this->lux->texture(displacementTextureName.asChar(), "float", "imagemap", boost::get_pointer(dmParams));
}
ParamSet triParams = CreateParamSet();
int numPointValues = numTriangles * 3;
int numUvValues = numTriangles * 3 * 2;
clock_t startTime = clock();
logger.info(MString("Adding mesh values to params."));
triParams->AddInt("indices", triangelVtxIdList, numTriangles * 3);
triParams->AddPoint("P", floatPointArray, numPointValues);
triParams->AddNormal("N", floatNormalArray, numPointValues);
triParams->AddFloat("uv", floatUvArray, numUvValues);
if( nsubdivlevels > 0)
triParams->AddInt("nsubdivlevels", &nsubdivlevels, 1);
triParams->AddBool("generatetangents", &generatetangents, 1);
triParams->AddString("subdivscheme", &subdalgo , 1);
if(displacementmap.length() > 0)
{
triParams->AddFloat("dmoffset", &dmoffset, 1);
triParams->AddFloat("dmscale", &dmscale, 1);
const char *dmft = displacementTextureName.asChar();
triParams->AddString("displacementmap", &dmft);
}
triParams->AddBool("dmnormalsmooth", &dmnormalsmooth, 1);
triParams->AddBool("dmnormalsplit", &dmnormalsplit, 1);
triParams->AddBool("dmsharpboundary", &dmsharpboundary, 1);
clock_t pTime = clock();
if(!noObjectDef)
this->lux->objectBegin(meshFullName.asChar());
this->lux->shape("trianglemesh", boost::get_pointer(triParams));
if(!noObjectDef)
this->lux->objectEnd();
clock_t eTime = clock();
logger.info(MString("Timing: Parameters: ") + ((pTime - startTime)/CLOCKS_PER_SEC) + " objTime " + ((eTime - pTime)/CLOCKS_PER_SEC) + " all " + ((eTime - startTime)/CLOCKS_PER_SEC));
return;
}
示例5: Refine
//.........这里部分代码省略.........
f2 ? f2->children[f2->vnum(face->v[k])] : NULL;
f2 = face->f[PREV(k)];
face->children[k]->f[PREV(k)] =
f2 ? f2->children[f2->vnum(face->v[k])] : NULL;
}
}
// Update face vertex pointers
for (uint32_t j = 0; j < f.size(); ++j) {
SDFace *face = f[j];
for (int k = 0; k < 3; ++k) {
// Update child vertex pointer to new even vertex
face->children[k]->v[k] = face->v[k]->child;
// Update child vertex pointer to new odd vertex
SDVertex *vert = edgeVerts[SDEdge(face->v[k], face->v[NEXT(k)])];
face->children[k]->v[NEXT(k)] = vert;
face->children[NEXT(k)]->v[k] = vert;
face->children[3]->v[k] = vert;
}
}
// Prepare for next level of subdivision
f = newFaces;
v = newVertices;
}
// Push vertices to limit surface
PbrtPoint *Plimit = new PbrtPoint[v.size()];
for (uint32_t i = 0; i < v.size(); ++i) {
if (v[i]->boundary)
Plimit[i] = weightBoundary(v[i], 1.f/5.f);
else
Plimit[i] = weightOneRing(v[i], gamma(v[i]->valence()));
}
for (uint32_t i = 0; i < v.size(); ++i)
v[i]->P = Plimit[i];
// Compute vertex tangents on limit surface
vector<Normal> Ns;
Ns.reserve(v.size());
vector<PbrtPoint> Pring(16, PbrtPoint());
for (uint32_t i = 0; i < v.size(); ++i) {
SDVertex *vert = v[i];
Vector S(0,0,0), T(0,0,0);
int valence = vert->valence();
if (valence > (int)Pring.size())
Pring.resize(valence);
vert->oneRing(&Pring[0]);
if (!vert->boundary) {
// Compute tangents of interior face
for (int k = 0; k < valence; ++k) {
S += cosf(2.f*M_PI*k/valence) * Vector(Pring[k]);
T += sinf(2.f*M_PI*k/valence) * Vector(Pring[k]);
}
} else {
// Compute tangents of boundary face
S = Pring[valence-1] - Pring[0];
if (valence == 2)
T = Vector(Pring[0] + Pring[1] - 2 * vert->P);
else if (valence == 3)
T = Pring[1] - vert->P;
else if (valence == 4) // regular
T = Vector(-1*Pring[0] + 2*Pring[1] + 2*Pring[2] +
-1*Pring[3] + -2*vert->P);
else {
float theta = M_PI / float(valence-1);
T = Vector(sinf(theta) * (Pring[0] + Pring[valence-1]));
for (int k = 1; k < valence-1; ++k) {
float wt = (2*cosf(theta) - 2) * sinf((k) * theta);
T += Vector(wt * Pring[k]);
}
T = -T;
}
}
Ns.push_back(Normal(Cross(S, T)));
}
// Create _TriangleMesh_ from subdivision mesh
uint32_t ntris = uint32_t(f.size());
int *verts = new int[3*ntris];
int *vp = verts;
uint32_t totVerts = uint32_t(v.size());
map<SDVertex *, int> usedVerts;
for (uint32_t i = 0; i < totVerts; ++i)
usedVerts[v[i]] = i;
for (uint32_t i = 0; i < ntris; ++i) {
for (int j = 0; j < 3; ++j) {
*vp = usedVerts[f[i]->v[j]];
++vp;
}
}
ParamSet paramSet;
paramSet.AddInt("indices", verts, 3*ntris);
paramSet.AddPoint("P", Plimit, totVerts);
paramSet.AddNormal("N", &Ns[0], int(Ns.size()));
refined.push_back(CreateTriangleMeshShape(ObjectToWorld,
WorldToObject, ReverseOrientation, paramSet));
delete[] verts;
delete[] Plimit;
}
示例6: defineCamera
void LuxRenderer::defineCamera()
{
std::shared_ptr<MayaScene> mayaScene = MayaTo::getWorldPtr()->worldScenePtr;
std::shared_ptr<RenderGlobals> renderGlobals = MayaTo::getWorldPtr()->worldRenderGlobalsPtr;
std::shared_ptr<MayaObject> mo = mayaScene->camList[0];
MMatrix cm = mo->dagPath.inclusiveMatrix();
MFnCamera camFn(mo->mobject);
this->transformCamera(mo.get(), renderGlobals->doMb && (mo->transformMatrices.size() > 1));
// lux uses the fov of the smallest image edge
double hFov = RadToDeg(camFn.horizontalFieldOfView());
double vFov = RadToDeg(camFn.verticalFieldOfView());
float fov = hFov;
int width, height;
renderGlobals->getWidthHeight(width, height);
if( height < width)
fov = vFov;
// focaldist
float focusDist = (float)camFn.focusDistance() * renderGlobals->sceneScale;
float focalLen = (float)camFn.focalLength();
float fStop = (float)camFn.fStop();
bool useDOF = false;
getBool(MString("depthOfField"), camFn, useDOF);
useDOF = useDOF && renderGlobals->doDof;
// hither, yon
float hither = (float)camFn.nearClippingPlane();
float yon = (float)camFn.farClippingPlane();
// render region
int left, bottom, right, top;
renderGlobals->getRenderRegion(left, bottom, right, top);
int ybot = (height - bottom);
int ytop = (height - top);
int ymin = ybot < ytop ? ybot : ytop;
int ymax = ybot > ytop ? ybot : ytop;
float lensradius = (focalLen / 1000.0) / ( 2.0 * fStop );
int blades = 0;
getInt(MString("mtlu_diaphragm_blades"), camFn, blades);
bool autofocus = false;
getBool(MString("mtlu_autofocus"), camFn, autofocus);
int dist = 0;
getInt(MString("mtlu_distribution"), camFn, dist);
logger.debug(MString("Lens distribution: ") + dist + " " + LensDistributions[dist]);
float power = 1.0f;
getFloat(MString("mtlu_power"), camFn, power);
const char *lensdistribution = LensDistributions[dist];
float shutterOpen = 0.0f;
float shutterClose = renderGlobals->mbLength;
ParamSet cp = CreateParamSet();
cp->AddFloat("fov", &fov);
cp->AddFloat("focaldistance", &focusDist);
cp->AddFloat("hither", &hither);
cp->AddFloat("yon", &yon);
cp->AddFloat("shutteropen", &shutterOpen);
cp->AddFloat("shutterclose", &shutterClose);
if( blades > 0)
cp->AddInt("blades", &blades);
if( useDOF )
{
cp->AddFloat("lensradius", &lensradius);
cp->AddBool("autofocus", &autofocus);
cp->AddString("distribution", &lensdistribution);
cp->AddFloat("power", &power);
}
lux->camera("perspective", boost::get_pointer(cp));
if( renderGlobals->exportSceneFile)
this->luxFile << "Camera \"perspective\" "<< "\"float fov\" [" << fov << "]" <<"\n";
}
示例7: testSimpleScene
int testSimpleScene() {
ParamSet params;
int xres = 500;
int yres = 500;
params.AddInt("xresolution", &xres, 1);
params.AddInt("yresolution", &yres, 1);
Transform t = LookAt(Point(0,0,0), Point(0,0,-100), Vector(0,1,0));
AnimatedTransform cam2world(&t, 0, &t, 0);
params.AddString("filename", new string("render.png"), 1);
//BoxFilter *filter = CreateBoxFilter(params);
GaussianFilter *filter = new GaussianFilter(3, 3, 0.001f);
ImageFilm *film = CreateImageFilm(params, filter);
PerspectiveCamera *camera = CreatePerspectiveCamera(params, cam2world, film);
//AdaptiveSampler *sampler = CreateAdaptiveSampler(params, film, camera);
//Sampler *sampler = CreateRandomSampler(params, film, camera);
//Sampler *sampler = CreateBestCandidateSampler(params, film, camera);
//Sampler *sampler = CreateHaltonSampler(params, film, camera);
//StratifiedSampler *sampler = CreateStratifiedSampler(params, film, camera);
bool jitter = false;
int xstart, xend, ystart, yend;
film->GetSampleExtent(&xstart, &xend, &ystart, ¥d);
int xsamp = 1;
int ysamp = 1;
StratifiedSampler *sampler = new StratifiedSampler(
xstart, xend, ystart, yend,
xsamp, ysamp,
jitter, camera->shutterOpen, camera->shutterClose);
//PathIntegrator *surfaceIg = CreatePathSurfaceIntegrator(params);
//DirectLightingIntegrator *surfaceIg = CreateDirectLightingIntegrator(params);
WhittedIntegrator *surfaceIg = CreateWhittedSurfaceIntegrator(params);
SingleScatteringIntegrator *volumeIg = CreateSingleScatteringIntegrator(params);
SamplerRenderer renderer(sampler, camera, surfaceIg, volumeIg, false);
VolumeRegion *volumeRegion = NULL;
vector<Light*> lights;
float il1[] = {1.f,1.f,1.f};
float il2[] = {2.f,0.5f,0.3f};
float il3[] = {0.f,0.2f,1.3f};
lights.push_back(new PointLight(Translate(Vector(2,2,0)), RGBSpectrum::FromRGB(il1)));
lights.push_back(new PointLight(Translate(Vector(-2,-2,-2)), RGBSpectrum::FromRGB(il2)));
lights.push_back(new PointLight(Translate(Vector(-2, 2,-2)), RGBSpectrum::FromRGB(il3)));
//(MCreatePointLight(Translate(Vector(2,2,0)), params));
//lights.push_back(CreatePointLight(Translate(Vector(0,4,0)), params));
Transform obj2world = Translate(Vector(0,0,-2));
Transform world2obj = Inverse(obj2world);
Sphere *sphere1 = CreateSphereShape(&obj2world, &world2obj, false, params);
Transform obj2world2 = Translate(Vector(0.7,0.7,2.6));
Transform world2obj2 = Inverse(obj2world2);
Sphere *sphere2 = CreateSphereShape(&obj2world2, &world2obj2, false, params);
TextureParams tparams(params, params, map<string, Reference<Texture<float> > >(),
map<string, Reference<Texture<Spectrum> > >());
MirrorMaterial *mirror = new MirrorMaterial(new ConstantTexture<Spectrum>(Spectrum(0.9f)), NULL);
ShinyMetalMaterial *metal = new ShinyMetalMaterial(
new ConstantTexture<Spectrum>(Spectrum(1.f)),
new ConstantTexture<float>(0.1f),
new ConstantTexture<Spectrum>(Spectrum(1.f)),
NULL); //CreateShinyMetalMaterial(Transform(), tparams);
GlassMaterial *glass = CreateGlassMaterial(Transform(), tparams);
//float c1[] = {0.f,10.99f,0.f};
float c1[] = {5.f,5.f,5.f};
Spectrum spec1 = RGBSpectrum::FromRGB(c1, SpectrumType::SPECTRUM_REFLECTANCE);
MatteMaterial *matte = new MatteMaterial(
new ConstantTexture<Spectrum>(spec1),
new ConstantTexture<float>(0.0f), NULL);
// Reference<Texture<Spectrum> > Kd = mp.GetSpectrumTexture("Kd", Spectrum(0.5f));
// Reference<Texture<float> > sigma = mp.GetFloatTexture("sigma", 0.f);
// Reference<Texture<float> > bumpMap = mp.GetFloatTextureOrNull("bumpmap");
// return ;
//CreateMatteMaterial(Transform(), tparams);
Reference<Primitive> prim1 = new GeometricPrimitive(sphere1, matte, NULL);
//Reference<Primitive> prim2 = new GeometricPrimitive(sphere2, metal, NULL);
vector<Reference<Primitive> > prims;
prims.push_back(prim1);
//prims.push_back(prim2);
Primitive *accel = CreateBVHAccelerator(prims, params);
//.........这里部分代码省略.........
示例8: Refine
void NURBS::Refine(vector<Reference<Shape> > &refined) const {
// Compute NURBS dicing rates
int diceu = 30, dicev = 30;
float *ueval = new float[diceu];
float *veval = new float[dicev];
Point *evalPs = new Point[diceu*dicev];
Normal *evalNs = new Normal[diceu*dicev];
int i;
for (i = 0; i < diceu; ++i)
ueval[i] = Lerp((float)i / (float)(diceu-1), umin, umax);
for (i = 0; i < dicev; ++i)
veval[i] = Lerp((float)i / (float)(dicev-1), vmin, vmax);
// Evaluate NURBS over grid of points
memset(evalPs, 0, diceu*dicev*sizeof(Point));
memset(evalNs, 0, diceu*dicev*sizeof(Point));
float *uvs = new float[2*diceu*dicev];
// Turn NURBS into triangles
Homogeneous3 *Pw = (Homogeneous3 *)P;
if (!isHomogeneous) {
Pw = (Homogeneous3 *)alloca(nu*nv*sizeof(Homogeneous3));
for (int i = 0; i < nu*nv; ++i) {
Pw[i].x = P[3*i];
Pw[i].y = P[3*i+1];
Pw[i].z = P[3*i+2];
Pw[i].w = 1.;
}
}
for (int v = 0; v < dicev; ++v) {
for (int u = 0; u < diceu; ++u) {
uvs[2*(v*diceu+u)] = ueval[u];
uvs[2*(v*diceu+u)+1] = veval[v];
Vector dPdu, dPdv;
Point pt = NURBSEvaluateSurface(uorder, uknot, nu, ueval[u],
vorder, vknot, nv, veval[v], Pw, &dPdu, &dPdv);
evalPs[v*diceu + u].x = pt.x;
evalPs[v*diceu + u].y = pt.y;
evalPs[v*diceu + u].z = pt.z;
evalNs[v*diceu + u] = Normal(Normalize(Cross(dPdu, dPdv)));
}
}
// Generate points-polygons mesh
int nTris = 2*(diceu-1)*(dicev-1);
int *vertices = new int[3 * nTris];
int *vertp = vertices;
// Compute the vertex offset numbers for the triangles
for (int v = 0; v < dicev-1; ++v) {
for (int u = 0; u < diceu-1; ++u) {
#define VN(u,v) ((v)*diceu+(u))
*vertp++ = VN(u, v);
*vertp++ = VN(u+1, v);
*vertp++ = VN(u+1, v+1);
*vertp++ = VN(u, v);
*vertp++ = VN(u+1, v+1);
*vertp++ = VN(u, v+1);
#undef VN
}
}
int nVerts = diceu*dicev;
ParamSet paramSet;
paramSet.AddInt("indices", vertices, 3*nTris);
paramSet.AddPoint("P", evalPs, nVerts);
paramSet.AddFloat("uv", uvs, 2 * nVerts);
paramSet.AddNormal("N", evalNs, nVerts);
refined.push_back(MakeShape("trianglemesh", ObjectToWorld,
reverseOrientation, paramSet));
// Cleanup from NURBS refinement
delete[] uvs;
delete[] ueval;
delete[] veval;
delete[] evalPs;
delete[] evalNs;
delete[] vertices;
}