本文整理汇总了C++中Pairs::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Pairs::size方法的具体用法?C++ Pairs::size怎么用?C++ Pairs::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Pairs
的用法示例。
在下文中一共展示了Pairs::size方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: writeEstimate
static void writeEstimate(ostream& out,
const ContigNode& id0, const ContigNode& id1,
unsigned len0, unsigned len1,
const Pairs& pairs, const PMF& pmf)
{
if (pairs.size() < opt::npairs)
return;
DistanceEst est;
est.distance = estimateDistance(len0, len1,
pairs, pmf, est.numPairs);
est.stdDev = pmf.getSampleStdDev(est.numPairs);
std::pair<ContigNode, ContigNode> e(id0, id1 ^ id0.sense());
if (est.numPairs >= opt::npairs) {
if (opt::format == DOT) {
#pragma omp critical(out)
out << get(g_contigNames, e) << " [" << est << "]\n";
} else
out << ' ' << get(g_contigNames, id1) << ',' << est;
} else if (opt::verbose > 1) {
#pragma omp critical(cerr)
cerr << "warning: " << get(g_contigNames, e)
<< " [d=" << est.distance << "] "
<< est.numPairs << " of " << pairs.size()
<< " pairs fit the expected distribution\n";
}
}
示例2: _align
/** performs a single alignment of the measurement to the model.
* The model needs to be added using addToModel before this call.
*
* @param measurement - the mesh that needs to be matched
* @param max_iter - maximum number of iterations
* @param min_mse - minimum average square distance between points after which to stop
* @param min_mse_diff - minimum difference in average square distance between points after which to stop
* @param overlap - percentage of overlap, range between [0..1]. A value of
* 0.95 will discard 5% of the pairs with the worst matches
*/
Result _align( _Adapter measurement, size_t max_iter, double min_mse, double min_mse_diff, double overlap )
{
Result result;
Pairs pairs;
result.C_global2globalnew = Eigen::Affine3d::Identity();
result.iter = 0;
result.overlap = overlap;
result.d_box = std::numeric_limits<double>::infinity();
result.mse_diff = result.mse = std::numeric_limits<double>::infinity();
double old_mse = result.mse;
while( result.iter < max_iter && result.mse > min_mse && result.mse_diff > min_mse_diff )
{
old_mse = result.mse;
pairs.clear();
findPairs.findPairs( measurement, pairs, result.d_box );
const size_t n_po = measurement.size() * result.overlap;
result.d_box = pairs.trim( n_po ) * 2.0;
result.pairs = pairs.size();
if( result.pairs < Pairs::MIN_PAIRS )
return result;
Eigen::Affine3d C_globalprev2globalnew = pairs.getTransform();
result.C_global2globalnew = C_globalprev2globalnew * result.C_global2globalnew;
measurement.setOffsetTransform( result.C_global2globalnew );
result.mse = pairs.getMeanSquareError();
result.mse_diff = old_mse - result.mse;
result.iter++;
// std::cout
// << "points: " << measurement.size()
// << "\titer: " << result.iter
// << "\tpairs: " << pairs.size()
// << "\tmse: " << result.mse
// << "\tmse_diff: " << result.mse_diff
// << "\td_box: " << result.d_box
// << "\toverlap: " << result.overlap
// << std::endl;
}
// std::cout
// << std::endl;
std::vector<double> pairs_distance;
for( size_t i = 0; i < pairs.size(); i++ ) {
pairs_distance.push_back( pairs.pairs[i].distance );
}
result.pairs_distance = pairs_distance;
return result;
}
示例3: estimateDistance
/** Estimate the distance between two contigs.
* @param numPairs [out] the number of pairs that agree with the
* expected distribution
* @return the estimated distance
*/
static int estimateDistance(unsigned len0, unsigned len1,
const Pairs& pairs, const PMF& pmf,
unsigned& numPairs)
{
// The provisional fragment sizes are calculated as if the contigs
// were perfectly adjacent with no overlap or gap.
typedef vector<pair<int, int> > Fragments;
Fragments fragments;
fragments.reserve(pairs.size());
for (Pairs::const_iterator it = pairs.begin();
it != pairs.end(); ++it) {
int a0 = it->targetAtQueryStart();
int a1 = it->mateTargetAtQueryStart();
if (it->isReverse())
a0 = len0 - a0;
if (!it->isMateReverse())
a1 = len1 - a1;
fragments.push_back(opt::rf
? make_pair(a1, len1 + a0)
: make_pair(a0, len0 + a1));
}
// Remove duplicate fragments.
unsigned orig = fragments.size();
sort(fragments.begin(), fragments.end());
fragments.erase(unique(fragments.begin(), fragments.end()),
fragments.end());
numPairs = fragments.size();
assert((int)orig - (int)numPairs >= 0);
stats.total_frags += orig;
stats.dup_frags += orig - numPairs;
if (numPairs < opt::npairs)
return INT_MIN;
vector<int> fragmentSizes;
fragmentSizes.reserve(fragments.size());
unsigned ma = opt::minAlign;
for (Fragments::const_iterator it = fragments.begin();
it != fragments.end(); ++it) {
int x = it->second - it->first;
if (!opt::rf && opt::method == MLE
&& x <= 2 * int(ma - 1)) {
unsigned align = x / 2;
if (opt::verbose > 0)
#pragma omp critical(cerr)
cerr << PROGRAM ": warning: The observed fragment of "
"size " << x << " bp is shorter than 2*l "
"(l=" << opt::minAlign << ").\n";
ma = min(ma, align);
}
fragmentSizes.push_back(x);
}
#pragma omp critical(g_recMA)
g_recMA = min(g_recMA, ma);
switch (opt::method) {
case MLE:
// Use the maximum likelihood estimator.
return maximumLikelihoodEstimate(ma,
opt::minDist, opt::maxDist,
fragmentSizes, pmf, len0, len1, opt::rf, numPairs);
case MEAN:
// Use the difference of the population mean
// and the sample mean.
return estimateDistanceUsingMean(
fragmentSizes, pmf, numPairs);
default:
assert(false);
abort();
}
}