本文整理汇总了C++中PCLVisualizer::setBackgroundColor方法的典型用法代码示例。如果您正苦于以下问题:C++ PCLVisualizer::setBackgroundColor方法的具体用法?C++ PCLVisualizer::setBackgroundColor怎么用?C++ PCLVisualizer::setBackgroundColor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PCLVisualizer
的用法示例。
在下文中一共展示了PCLVisualizer::setBackgroundColor方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main (int argc, char *argv[])
{
if (argc < 3) {
cout << "Enter the two files for registration ..\n";
return -1;
}
pcl::console::setVerbosityLevel (pcl::console::L_DEBUG);
string sourcefile = argv[1];
string targetfile = argv[2];
CloudPtr cloud1 ( new Cloud );
CloudPtr cloud2 ( new Cloud );
readPCDBinaryFile (sourcefile.c_str (), cloud1);
readPCDBinaryFile (targetfile.c_str (), cloud2);
//pcl::IterativeClosestPointNonLinear <Point, Point> icp;
pcl::IterativeClosestPoint <Point, Point> icp;
icp.setInputSource (cloud1);
icp.setInputTarget (cloud2);
icp.setMaximumIterations (2500);
icp.setTransformationEpsilon (0.0000001);
Eigen::AngleAxisf init_rotation (0.6931, Eigen::Vector3f::UnitZ ());
Eigen::Translation3f init_translation (1.79387, 0.720047, 0);
//Eigen::Matrix4f init_guess = Eigen::Matrix4f::Identity ();
Eigen::Matrix4f init_guess = (init_translation * init_rotation).matrix ();
CloudPtr output (new Cloud);
icp.align (*output, init_guess);
//pcl::transformPointCloud (*cloud1, *output, icp.getFinalTransformation ());
std::cout << "ICP NL has converged:" << icp.hasConverged ()
<< " score: " << icp.getFitnessScore () << std::endl;
cout << "--------- Final transformation ---------------\n";
cout << icp.getFinalTransformation () << "\n\n";
CloudPtr cloud1_ig (new Cloud);
pcl::transformPointCloud (*cloud1, *cloud1_ig, init_guess);
PCLVisualizer* p = new PCLVisualizer (argc, argv, "Registration");
int vp1 = 1;
p->createViewPort (0.0, 0.0, 0.5, 1.0, vp1);
int vp2 = 2;
p->createViewPort (0.5, 0.0, 1.0, 1.0, vp2);
p->setBackgroundColor (113.0/255, 113.0/255, 154.0/255);
int color[3] = { 255, 0, 0};
displayPointCloud (p, cloud1_ig, color, (char *) "opcloud1", vp1);
color[0] = 0; color[1] = 255; color[2] = 0;
displayPointCloud (p, cloud2, color, (char *) "opcloud2", vp1);
color[0] = 0; color[1] = 255; color[2] = 0;
displayPointCloud (p, output, color, (char *) "opcloud11", vp2);
color[0] = 255; color[1] = 0; color[2] = 0;
displayPointCloud (p, cloud2, color, (char *) "opcloud12", vp2);
p->spin ();
return 0;
}
示例2: onInit
void PointCloudViewer::onInit(PCLVisualizer& visualizer) {
// position viewport 3m behind kinect, but look around the point 2m in front of it
visualizer.setCameraPosition(0., 0., -3., 0., 0., 2., 0., -1., 0.);
visualizer.setCameraClipDistances(1.0, 10.0);
visualizer.setBackgroundColor(0.3, 0.3, 0.8);
}
示例3: sprintf
void
visualize (const ModelLibrary::HashTable& hash_table)
{
PCLVisualizer vis;
vis.setBackgroundColor (0.1, 0.1, 0.1);
const ModelLibrary::HashTableCell* cells = hash_table.getVoxels ();
size_t max_num_entries = 0;
int i, id3[3], num_cells = hash_table.getNumberOfVoxels ();
float half_side, b[6], cell_center[3], spacing = hash_table.getVoxelSpacing ()[0];
char cube_id[128];
// Just get the maximal number of entries in the cells
for ( i = 0 ; i < num_cells ; ++i, ++cells )
{
if (cells->size ()) // That's the number of models in the cell (it's maximum one, since we loaded only one model)
{
size_t num_entries = (*cells->begin ()).second.size(); // That's the number of entries in the current cell for the model we loaded
// Get the max number of entries
if ( num_entries > max_num_entries )
max_num_entries = num_entries;
}
}
// Now, that we have the max. number of entries, we can compute the
// right scale factor for the spheres
float s = (0.5f*spacing)/static_cast<float> (max_num_entries);
cout << "s = " << s << ", max_num_entries = " << max_num_entries << endl;
// Now, render a sphere with the right radius at the right place
for ( i = 0, cells = hash_table.getVoxels () ; i < num_cells ; ++i, ++cells )
{
// Does the cell have any entries?
if (cells->size ())
{
hash_table.compute3dId (i, id3);
hash_table.computeVoxelCenter (id3, cell_center);
// That's half of the cube's side length
half_side = s*static_cast<float> ((*cells->begin ()).second.size ());
// Adjust the bounds of the cube
b[0] = cell_center[0] - half_side; b[1] = cell_center[0] + half_side;
b[2] = cell_center[1] - half_side; b[3] = cell_center[1] + half_side;
b[4] = cell_center[2] - half_side; b[5] = cell_center[2] + half_side;
// Set the id
sprintf (cube_id, "cube %i", i);
// Add to the visualizer
vis.addCube (b[0], b[1], b[2], b[3], b[4], b[5], 1.0, 1.0, 0.0, cube_id);
}
}
vis.addCoordinateSystem(1.5, "global");
vis.resetCamera ();
// Enter the main loop
while (!vis.wasStopped ())
{
vis.spinOnce (100);
boost::this_thread::sleep (boost::posix_time::microseconds (100000));
}
}
示例4:
void
visualize (const ModelLibrary::HashTable* hash_table)
{
const ModelLibrary::HashTableCell* cells = hash_table->getVoxels ();
size_t max_num_entries = 0;
int id3[3], num_cells = hash_table->getNumberOfVoxels ();
double cell_center[3];
vtkPoints* sphere_centers = vtkPoints::New (VTK_DOUBLE);
vtkDoubleArray* scale = vtkDoubleArray::New ();
scale->SetNumberOfComponents(1);
// Get the positions of the spheres (one sphere per full cell)
for (int i = 0 ; i < num_cells ; ++i, ++cells)
{
// Does the cell have any entries?
if (cells->size ())
{
// Insert the center of the current voxel in the point set
hash_table->compute3dId (i, id3);
hash_table->computeVoxelCenter (id3, cell_center);
sphere_centers->InsertNextPoint (cell_center);
// Save the number of entries
scale->InsertNextValue (static_cast<double> (cells->size ()));
// Get the max
if (cells->size () > max_num_entries)
max_num_entries = cells->size ();
}
}
PCLVisualizer vis;
vis.setBackgroundColor (0.1, 0.1, 0.1);
// Is there something to visualize?
if (max_num_entries)
{
// Compute the factor which maps all the scale values in (0, 1]
double factor = 1.0/static_cast<double> (max_num_entries);
// Set the true scale
for (vtkIdType i = 0 ; i < scale->GetNumberOfTuples () ; ++i)
scale->SetValue(i, factor*scale->GetValue (i));
// Input for the glyph object: the centers + scale
vtkPolyData *positions = vtkPolyData::New ();
positions->SetPoints (sphere_centers);
positions->GetPointData ()->SetScalars (scale);
// The spheres
vtkSphereSource* sphere_src = vtkSphereSource::New ();
sphere_src->SetPhiResolution(8);
sphere_src->SetThetaResolution(8);
sphere_src->SetRadius(0.5*hash_table->getVoxelSpacing ()[0]);
// Now that we have the points and the corresponding scalars, build the glyph object
vtkGlyph3D *glyph = vtkGlyph3D::New ();
glyph->SetScaleModeToScaleByScalar ();
glyph->SetColorModeToColorByScalar ();
glyph->SetInput (positions);
glyph->SetSource (sphere_src->GetOutput ());
glyph->Update ();
vtkSmartPointer<vtkPolyData> glyph_output (glyph->GetOutput ());
vis.addModelFromPolyData(glyph_output);
// Cleanup
glyph->Delete ();
positions->Delete ();
sphere_src->Delete ();
}
vis.spin();
// Cleanup
sphere_centers->Delete();
scale->Delete();
}