当前位置: 首页>>代码示例>>C++>>正文


C++ PBowDocBs::GetAllDIdV方法代码示例

本文整理汇总了C++中PBowDocBs::GetAllDIdV方法的典型用法代码示例。如果您正苦于以下问题:C++ PBowDocBs::GetAllDIdV方法的具体用法?C++ PBowDocBs::GetAllDIdV怎么用?C++ PBowDocBs::GetAllDIdV使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PBowDocBs的用法示例。


在下文中一共展示了PBowDocBs::GetAllDIdV方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: SaveSparseMatlabTxt

void TBowFl::SaveSparseMatlabTxt(const PBowDocBs& BowDocBs,
    const PBowDocWgtBs& BowDocWgtBs, const TStr& FNm,
    const TStr& CatFNm, const TIntV& _DIdV) {

  TIntV DIdV;
  if (_DIdV.Empty()) {
      BowDocBs->GetAllDIdV(DIdV);
  } else {
      DIdV = _DIdV;
  }
  // generate map of row-ids to words
  TFOut WdMapSOut(TStr::PutFExt(FNm, ".row-to-word-map.dat"));
  for (int WId = 0; WId < BowDocWgtBs->GetWords(); WId++) {
    TStr WdStr = BowDocBs->GetWordStr(WId);
    WdMapSOut.PutStrLn(TStr::Fmt("%d %s", WId+1,  WdStr.CStr()));
  }
  WdMapSOut.Flush();
  // generate map of col-ids to document names
  TFOut DocMapSOut(TStr::PutFExt(FNm, ".col-to-docName-map.dat"));
  for (int DocN = 0; DocN < DIdV.Len(); DocN++) {
    const int DId = DIdV[DocN];
    TStr DocNm = BowDocBs->GetDocNm(DId);
    DocMapSOut.PutStrLn(TStr::Fmt("%d %d %s", DocN, DId,  DocNm.CStr()));
  }
  DocMapSOut.Flush();
  // save documents' sparse vectors
  TFOut SOut(FNm);
  for (int DocN = 0; DocN < DIdV.Len(); DocN++){
    const int DId = DIdV[DocN];
    PBowSpV DocSpV = BowDocWgtBs->GetSpV(DId);
    const int DocWIds = DocSpV->GetWIds();
    for (int DocWIdN=0; DocWIdN<DocWIds; DocWIdN++){
      const int WId = DocSpV->GetWId(DocWIdN);
      const double WordWgt = DocSpV->GetWgt(DocWIdN);
      SOut.PutStrLn(TStr::Fmt("%d %d %.16f", WId+1, DocN+1, WordWgt));
    }
  }
  SOut.Flush();
  // save documents' category sparse vectors
  if (!CatFNm.Empty()) {
    TFOut CatSOut(CatFNm);
    for (int DocN = 0; DocN < DIdV.Len(); DocN++){
      const int DId = DIdV[DocN];
      const int DocCIds = BowDocBs->GetDocCIds(DId);
      for (int DocCIdN=0; DocCIdN<DocCIds; DocCIdN++){
        const int CId = BowDocBs->GetDocCId(DId, DocCIdN);
        const double CatWgt = 1.0;
        CatSOut.PutStrLn(TStr::Fmt("%d %d %.16f", CId+1, DocN+1, CatWgt));
      }
    }
    CatSOut.Flush();
  }
}
开发者ID:Accio,项目名称:snap,代码行数:53,代码来源:bowflx.cpp

示例2: LoadCsv

PBowDocBs TFtrGenBs::LoadCsv(TStr& FNm, const int& ClassId, 
        const TIntV& IgnoreIdV, const int& TrainLen) {

    // feature generators
	PFtrGenBs FtrGenBs = TFtrGenBs::New();
    // CSV parsing stuff
    PSIn SIn = TFIn::New(FNm); 
    char SsCh = ' '; TStrV FldValV;
    // read the headers and initialise the feature generators
    TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);  
    for (int FldValN = 0; FldValN < FldValV.Len(); FldValN++) {
        const TStr& FldVal = FldValV[FldValN];
        if (FldValN == ClassId) { 
            if (FldVal == "NOM") {
                FtrGenBs->PutClsFtrGen(TFtrGenNominal::New());
            } else if (FldVal == "MULTI-NOM") {
                FtrGenBs->PutClsFtrGen(TFtrGenMultiNom::New());
            } else {
                TExcept::Throw("Wrong class type '" + FldVal + "', should be NOM or MULTI-NOM!");
            }
        } else if (!IgnoreIdV.IsIn(FldValN)) {
            if (FldVal == TFtrGenNumeric::GetType()) {
				FtrGenBs->AddFtrGen(TFtrGenNumeric::New());
            } else if (FldVal == TFtrGenNominal::GetType()) { 
				FtrGenBs->AddFtrGen(TFtrGenNominal::New());
            } else if (FldVal == TFtrGenToken::GetType()) { 
				FtrGenBs->AddFtrGen(TFtrGenToken::New(
                    TSwSet::New(swstNone), TStemmer::New(stmtNone)));
            } else if (FldVal == TFtrGenSparseNumeric::GetType()) { 
				FtrGenBs->AddFtrGen(TFtrGenSparseNumeric::New());
            } else if (FldVal == TFtrGenMultiNom::GetType()) { 
				FtrGenBs->AddFtrGen(TFtrGenMultiNom::New());
            } else {
                TExcept::Throw("Wrong type '" + FldVal + "'!");
            }
        }
    }
    const int Flds = FldValV.Len();
    // read the lines and feed them to the feature generators
    int Recs = 0;
    while (!SIn->Eof()) {
        if (Recs == TrainLen) { break; }
        Recs++; printf("%7d\r", Recs);
        TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);
        // make sure line still has the same number of fields as the header
        EAssertR(FldValV.Len() == Flds, 
            TStr::Fmt("Wrong number of fields in line %d! Found %d and expected %d!",
            Recs + 1, FldValV.Len(), Flds));
        // go over lines
        try {
			TStrV FtrValV;
            for (int FldValN = 0; FldValN < FldValV.Len(); FldValN++) {
                const TStr& FldVal = FldValV[FldValN];
                if (FldValN == ClassId) { 
					FtrGenBs->UpdateCls(FldVal);
                } else if (!IgnoreIdV.IsIn(FldValN)) {
                    FtrValV.Add(FldVal);
                }
            }
			FtrGenBs->Update(FtrValV);
        } catch (PExcept Ex) {
            TExcept::Throw(TStr::Fmt("Error in line %d: '%s'!", 
                Recs+1, Ex->GetMsgStr().CStr()));
        }
    }
    // read the file again and feed it to the training set
    PBowDocBs BowDocBs = FtrGenBs->MakeBowDocBs();
    // we read and ignore the headers since we parsed them already 
    SIn = TFIn::New(FNm); SsCh = ' ';
    TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);  
    // read the lines and feed them to the training set
    Recs = 0;
    while (!SIn->Eof()){
        Recs++; printf("%7d\r", Recs);
        TSs::LoadTxtFldV(ssfCommaSep, SIn, SsCh, FldValV, false);
        // make sure line still has the same number of fields as the header
        EAssertR(FldValV.Len() == Flds, 
            TStr::Fmt("Wrong number of fields in line %s! Found %d and expected %d!",
            Recs + 1, FldValV.Len(), Flds));
        // go over lines and construct the sparse vector
		TStrV FtrValV; TStr ClsFtrVal;
        try {
            for (int FldValN = 0; FldValN < FldValV.Len(); FldValN++) {
                const TStr& FldVal = FldValV[FldValN];
                if (FldValN == ClassId) { 
                    ClsFtrVal = FldVal;
                } else if (!IgnoreIdV.IsIn(FldValN)) {
                    FtrValV.Add(FldVal);
                }
            }
        } catch (PExcept Ex) {
            TExcept::Throw(TStr::Fmt("Error in line %d: '%s'!", 
                Recs+1, Ex->GetMsgStr().CStr()));
        }
        // add the feature vector to trainsets
		FtrGenBs->AddBowDoc(BowDocBs, TStr::Fmt("Line-%d", Recs), FtrValV, ClsFtrVal);
    }
	// prepare training and testing doc ids
	TIntV AllDIdV; BowDocBs->GetAllDIdV(AllDIdV); IAssert(AllDIdV.IsSorted());
	TIntV TrainDIdV = AllDIdV; TrainDIdV.Trunc(TrainLen);
//.........这里部分代码省略.........
开发者ID:mkarlovc,项目名称:gcentralization,代码行数:101,代码来源:ftrgen.cpp

示例3: New

PBowMd TBowWinnowMd::New(
 const PBowDocBs& BowDocBs, const TStr& CatNm, const double& Beta){
  // create model
  TBowWinnowMd* WinnowMd=new TBowWinnowMd(BowDocBs); PBowMd BowMd(WinnowMd);
  WinnowMd->CatNm=CatNm;
  WinnowMd->Beta=Beta;
  WinnowMd->VoteTsh=0.5;
  // prepare Winnow parameters
  const double MnExpertWgtSum=1e-15;
  // get cat-id
  int CId=BowDocBs->GetCId(CatNm);
  if (CId==-1){
    TExcept::Throw(TStr::GetStr(CatNm, "Invalid Category Name ('%s')!"));}
  // get training documents
  TIntV TrainDIdV; BowDocBs->GetAllDIdV(TrainDIdV);
  int TrainDocs=TrainDIdV.Len();
  // prepare mini-experts
  int Words=BowDocBs->GetWords();
  WinnowMd->PosExpertWgtV.Gen(Words); WinnowMd->PosExpertWgtV.PutAll(1);
  WinnowMd->NegExpertWgtV.Gen(Words); WinnowMd->NegExpertWgtV.PutAll(1);
  // winnow loop
  double PrevAcc=0; double PrevPrec=0; double PrevRec=0; double PrevF1=0;
  const double MxDiff=-0.005; const int MxWorseIters=3; int WorseIters=0;
  const int MxIters=50; int IterN=0;
  while ((IterN<MxIters)&&(WorseIters<MxWorseIters)){
    IterN++;
    int FalsePos=0; int FalseNeg=0; int TruePos=0; int TrueNeg=0;
    for (int DIdN=0; DIdN<TrainDocs; DIdN++){
      int DId=TrainDIdV[DIdN];
      bool ClassVal=BowDocBs->IsCatInDoc(DId, CId);
      double PosWgt=0; double NegWgt=0;
      double OldSum=0; double NewSum=0;
      int WIds=BowDocBs->GetDocWIds(DId);
      // change only experts of words that occur in the document
      for (int WIdN=0; WIdN<WIds; WIdN++){
        int WId=BowDocBs->GetDocWId(DId, WIdN);
        OldSum+=WinnowMd->PosExpertWgtV[WId]+WinnowMd->NegExpertWgtV[WId];
        // penalize expert giving wrong class prediction
        if (ClassVal){
          WinnowMd->NegExpertWgtV[WId]*=Beta;
        } else {
          WinnowMd->PosExpertWgtV[WId]*=Beta;
        }
        NewSum+=WinnowMd->PosExpertWgtV[WId]+WinnowMd->NegExpertWgtV[WId];
        PosWgt+=WinnowMd->PosExpertWgtV[WId];
        NegWgt+=WinnowMd->NegExpertWgtV[WId];
      }
      // normalize all experts
      if (NewSum>MnExpertWgtSum){
        for (int WIdN=0; WIdN<WIds; WIdN++){
          int WId=BowDocBs->GetDocWId(DId, WIdN);
          WinnowMd->PosExpertWgtV[WId]*=OldSum/NewSum;
          WinnowMd->NegExpertWgtV[WId]*=OldSum/NewSum;
        }
      }
      bool PredClassVal;
      if (PosWgt+NegWgt==0){PredClassVal=TBool::GetRnd();}
      else {PredClassVal=(PosWgt/(PosWgt+NegWgt))>WinnowMd->VoteTsh;}
      if (PredClassVal==ClassVal){
        if (PredClassVal){TruePos++;} else {TrueNeg++;}
      } else {
        if (PredClassVal){FalsePos++;} else {FalseNeg++;}
      }
    }
    // calculate temporary results
    if (TrainDocs==0){break;}
    double Acc=0; double Prec=0; double Rec=0; double F1=0;
    if (TrainDocs>0){
      Acc=100*(TruePos+TrueNeg)/double(TrainDocs);
      if (TruePos+FalsePos>0){
        Prec=(TruePos/double(TruePos+FalsePos));
        Rec=(TruePos/double(TruePos+FalseNeg));
        if (Prec+Rec>0){
          F1=(2*Prec*Rec/(Prec+Rec));
        }
      }
    }
    // check if the current iteration gave worse results then the previous
    if (((Acc-PrevAcc)<MxDiff)||((F1-PrevF1)<MxDiff)||(((Prec-PrevPrec)<MxDiff)&&
     ((Rec-PrevRec)<MxDiff))){WorseIters++;}
    else {WorseIters=0;}
    PrevAcc=Acc; PrevPrec=Prec; PrevRec=Rec; PrevF1=F1;
    printf("%d. Precision:%0.3f   Recall:%0.3f   F1:%0.3f   Accuracy:%0.3f%%\n",
     IterN, Prec, Rec, F1, Acc);
  }
  // return model
  return BowMd;
}
开发者ID:Austindeadhead,项目名称:qminer,代码行数:88,代码来源:bowmd.cpp


注:本文中的PBowDocBs::GetAllDIdV方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。