本文整理汇总了C++中PBB::getInEdges方法的典型用法代码示例。如果您正苦于以下问题:C++ PBB::getInEdges方法的具体用法?C++ PBB::getInEdges怎么用?C++ PBB::getInEdges使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PBB
的用法示例。
在下文中一共展示了PBB::getInEdges方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: dominators
// Essentially Algorithm 19.9 of Appel's "modern compiler implementation in Java" 2nd ed 2002
void DataFlow::dominators(Cfg* cfg) {
PBB r = cfg->getEntryBB();
unsigned numBB = cfg->getNumBBs();
BBs.resize(numBB, (PBB)-1);
N = 0; BBs[0] = r;
indices.clear(); // In case restart decompilation due to switch statements
indices[r] = 0;
// Initialise to "none"
dfnum.resize(numBB, 0);
semi.resize(numBB, -1);
ancestor.resize(numBB, -1);
idom.resize(numBB, -1);
samedom.resize(numBB, -1);
vertex.resize(numBB, -1);
parent.resize(numBB, -1);
best.resize(numBB, -1);
bucket.resize(numBB);
DF.resize(numBB);
// Set up the BBs and indices vectors. Do this here because sometimes a BB can be unreachable (so relying on
// in-edges doesn't work)
std::list<PBB>::iterator ii;
int idx = 1;
for (ii = cfg->begin(); ii != cfg->end(); ii++) {
PBB bb = *ii;
if (bb != r) { // Entry BB r already done
indices[bb] = idx;
BBs[idx++] = bb;
}
}
DFS(-1, 0);
int i;
for (i=N-1; i >= 1; i--) {
int n = vertex[i]; int p = parent[n]; int s = p;
/* These lines calculate the semi-dominator of n, based on the Semidominator Theorem */
// for each predecessor v of n
PBB bb = BBs[n];
std::vector<PBB>& inEdges = bb->getInEdges();
std::vector<PBB>::iterator it;
for (it = inEdges.begin(); it != inEdges.end(); it++) {
if (indices.find(*it) == indices.end()) {
std::cerr << "BB not in indices: "; (*it)->print(std::cerr);
assert(false);
}
int v = indices[*it];
int sdash;
if (dfnum[v] <= dfnum[n])
sdash = v;
else sdash = semi[ancestorWithLowestSemi(v)];
if (dfnum[sdash] < dfnum[s])
s = sdash;
}
semi[n] = s;
/* Calculation of n's dominator is deferred until the path from s to n has been linked into the forest */
bucket[s].insert(n);
Link(p, n);
// for each v in bucket[p]
std::set<int>::iterator jj;
for (jj=bucket[p].begin(); jj != bucket[p].end(); jj++) {
int v = *jj;
/* Now that the path from p to v has been linked into the spanning forest, these lines calculate the
dominator of v, based on the first clause of the Dominator Theorem, or else defer the calculation until
y's dominator is known. */
int y = ancestorWithLowestSemi(v);
if (semi[y] == semi[v])
idom[v] = p; // Success!
else samedom[v] = y; // Defer
}
bucket[p].clear();
}
for (i=1; i < N-1; i++) {
/* Now all the deferred dominator calculations, based on the second clause of the Dominator Theorem, are
performed. */
int n = vertex[i];
if (samedom[n] != -1) {
idom[n] = idom[samedom[n]]; // Deferred success!
}
}
computeDF(0); // Finally, compute the dominance frontiers
}