本文整理汇总了C++中OwningPtr::stop方法的典型用法代码示例。如果您正苦于以下问题:C++ OwningPtr::stop方法的具体用法?C++ OwningPtr::stop怎么用?C++ OwningPtr::stop使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类OwningPtr
的用法示例。
在下文中一共展示了OwningPtr::stop方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
//.........这里部分代码省略.........
Function *Fn = &*I;
if (Fn != EntryFn && !Fn->isDeclaration())
EE->getPointerToFunction(Fn);
}
}
// Trigger compilation separately so code regions that need to be
// invalidated will be known.
(void)EE->getPointerToFunction(EntryFn);
// Clear instruction cache before code will be executed.
if (RTDyldMM)
static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache();
// Run main.
Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
// Run static destructors.
EE->runStaticConstructorsDestructors(true);
// If the program didn't call exit explicitly, we should call it now.
// This ensures that any atexit handlers get called correctly.
if (Function *ExitF = dyn_cast<Function>(Exit)) {
std::vector<GenericValue> Args;
GenericValue ResultGV;
ResultGV.IntVal = APInt(32, Result);
Args.push_back(ResultGV);
EE->runFunction(ExitF, Args);
errs() << "ERROR: exit(" << Result << ") returned!\n";
abort();
} else {
errs() << "ERROR: exit defined with wrong prototype!\n";
abort();
}
} else {
// else == "if (RemoteMCJIT)"
// Remote target MCJIT doesn't (yet) support static constructors. No reason
// it couldn't. This is a limitation of the LLI implemantation, not the
// MCJIT itself. FIXME.
//
RemoteMemoryManager *MM = static_cast<RemoteMemoryManager*>(RTDyldMM);
// Everything is prepared now, so lay out our program for the target
// address space, assign the section addresses to resolve any relocations,
// and send it to the target.
OwningPtr<RemoteTarget> Target;
if (!ChildExecPath.empty()) { // Remote execution on a child process
if (!RemoteTarget::hostSupportsExternalRemoteTarget()) {
errs() << "Warning: host does not support external remote targets.\n"
<< " Defaulting to simulated remote execution\n";
Target.reset(RemoteTarget::createRemoteTarget());
} else {
if (!sys::fs::can_execute(ChildExecPath)) {
errs() << "Unable to find usable child executable: '" << ChildExecPath
<< "'\n";
return -1;
}
Target.reset(RemoteTarget::createExternalRemoteTarget(ChildExecPath));
}
} else {
// No child process name provided, use simulated remote execution.
Target.reset(RemoteTarget::createRemoteTarget());
}
// Give the memory manager a pointer to our remote target interface object.
MM->setRemoteTarget(Target.get());
// Create the remote target.
if (!Target->create()) {
errs() << "ERROR: " << Target->getErrorMsg() << "\n";
return EXIT_FAILURE;
}
// Since we're executing in a (at least simulated) remote address space,
// we can't use the ExecutionEngine::runFunctionAsMain(). We have to
// grab the function address directly here and tell the remote target
// to execute the function.
//
// Our memory manager will map generated code into the remote address
// space as it is loaded and copy the bits over during the finalizeMemory
// operation.
//
// FIXME: argv and envp handling.
uint64_t Entry = EE->getFunctionAddress(EntryFn->getName().str());
DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x"
<< format("%llx", Entry) << "\n");
if (!Target->executeCode(Entry, Result))
errs() << "ERROR: " << Target->getErrorMsg() << "\n";
// Like static constructors, the remote target MCJIT support doesn't handle
// this yet. It could. FIXME.
// Stop the remote target
Target->stop();
}
return Result;
}