本文整理汇总了C++中OutputArray::isUMat方法的典型用法代码示例。如果您正苦于以下问题:C++ OutputArray::isUMat方法的具体用法?C++ OutputArray::isUMat怎么用?C++ OutputArray::isUMat使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类OutputArray
的用法示例。
在下文中一共展示了OutputArray::isUMat方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: blendLinear
void cv::blendLinear( InputArray _src1, InputArray _src2, InputArray _weights1, InputArray _weights2, OutputArray _dst )
{
int type = _src1.type(), depth = CV_MAT_DEPTH(type);
Size size = _src1.size();
CV_Assert(depth == CV_8U || depth == CV_32F);
CV_Assert(size == _src2.size() && size == _weights1.size() && size == _weights2.size());
CV_Assert(type == _src2.type() && _weights1.type() == CV_32FC1 && _weights2.type() == CV_32FC1);
_dst.create(size, type);
CV_OCL_RUN(_dst.isUMat(),
ocl_blendLinear(_src1, _src2, _weights1, _weights2, _dst))
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), weights1 = _weights1.getMat(),
weights2 = _weights2.getMat(), dst = _dst.getMat();
if (depth == CV_8U)
{
BlendLinearInvoker<uchar> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
else if (depth == CV_32F)
{
BlendLinearInvoker<float> invoker(src1, src2, weights1, weights2, dst);
parallel_for_(Range(0, src1.rows), invoker, dst.total()/(double)(1<<16));
}
}
示例2: repeat
void repeat(InputArray _src, int ny, int nx, OutputArray _dst)
{
CV_Assert( _src.dims() <= 2 );
CV_Assert( ny > 0 && nx > 0 );
Size ssize = _src.size();
_dst.create(ssize.height*ny, ssize.width*nx, _src.type());
CV_OCL_RUN(_dst.isUMat(),
ocl_repeat(_src, ny, nx, _dst))
Mat src = _src.getMat(), dst = _dst.getMat();
Size dsize = dst.size();
int esz = (int)src.elemSize();
int x, y;
ssize.width *= esz; dsize.width *= esz;
for( y = 0; y < ssize.height; y++ )
{
for( x = 0; x < dsize.width; x += ssize.width )
memcpy( dst.data + y*dst.step + x, src.data + y*src.step, ssize.width );
}
for( ; y < dsize.height; y++ )
memcpy( dst.data + y*dst.step, dst.data + (y - ssize.height)*dst.step, dsize.width );
}
示例3: convertTo
void UMat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const
{
bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON;
int stype = type(), cn = CV_MAT_CN(stype);
if( _type < 0 )
_type = _dst.fixedType() ? _dst.type() : stype;
else
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), cn);
int sdepth = CV_MAT_DEPTH(stype), ddepth = CV_MAT_DEPTH(_type);
if( sdepth == ddepth && noScale )
{
copyTo(_dst);
return;
}
#ifdef HAVE_OPENCL
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
bool needDouble = sdepth == CV_64F || ddepth == CV_64F;
if( dims <= 2 && cn && _dst.isUMat() && ocl::useOpenCL() &&
((needDouble && doubleSupport) || !needDouble) )
{
int wdepth = std::max(CV_32F, sdepth), rowsPerWI = 4;
char cvt[2][40];
ocl::Kernel k("convertTo", ocl::core::convert_oclsrc,
format("-D srcT=%s -D WT=%s -D dstT=%s -D convertToWT=%s -D convertToDT=%s%s%s",
ocl::typeToStr(sdepth), ocl::typeToStr(wdepth), ocl::typeToStr(ddepth),
ocl::convertTypeStr(sdepth, wdepth, 1, cvt[0]),
ocl::convertTypeStr(wdepth, ddepth, 1, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : "", noScale ? " -D NO_SCALE" : ""));
if (!k.empty())
{
UMat src = *this;
_dst.create( size(), _type );
UMat dst = _dst.getUMat();
float alphaf = (float)alpha, betaf = (float)beta;
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
dstarg = ocl::KernelArg::WriteOnly(dst, cn);
if (noScale)
k.args(srcarg, dstarg, rowsPerWI);
else if (wdepth == CV_32F)
k.args(srcarg, dstarg, alphaf, betaf, rowsPerWI);
else
k.args(srcarg, dstarg, alpha, beta, rowsPerWI);
size_t globalsize[2] = { (size_t)dst.cols * cn, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
if (k.run(2, globalsize, NULL, false))
{
CV_IMPL_ADD(CV_IMPL_OCL);
return;
}
}
}
#endif
Mat m = getMat(ACCESS_READ);
m.convertTo(_dst, _type, alpha, beta);
}
示例4: readNextFrame
void BTVL1::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
{
if (outPos_ >= storePos_)
{
_output.release();
return;
}
readNextFrame(frameSource);
if (procPos_ < storePos_)
{
++procPos_;
processFrame(procPos_);
}
++outPos_;
CV_OCL_RUN(isUmat_,
ocl_processImpl(frameSource, _output))
const Mat& curOutput = at(outPos_, outputs_);
if (_output.kind() < _InputArray::OPENGL_BUFFER || _output.isUMat())
curOutput.convertTo(_output, CV_8U);
else
{
curOutput.convertTo(finalOutput_, CV_8U);
arrCopy(finalOutput_, _output);
}
}
示例5: void
void cv::superres::arrCopy(InputArray src, OutputArray dst)
{
if (dst.isUMat() || src.isUMat())
{
src.copyTo(dst);
return;
}
typedef void (*func_t)(InputArray src, OutputArray dst);
static const func_t funcs[10][10] =
{
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0, mat2gpu },
{ 0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0, mat2gpu },
{ 0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0, mat2gpu },
{ 0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0, mat2gpu },
{ 0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0, mat2gpu },
{ 0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0, mat2gpu },
{ 0, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, 0, buf2arr },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, arr2buf, 0 , gpu2gpu },
};
const int src_kind = src.kind() >> _InputArray::KIND_SHIFT;
const int dst_kind = dst.kind() >> _InputArray::KIND_SHIFT;
CV_Assert( src_kind >= 0 && src_kind < 10 );
CV_Assert( dst_kind >= 0 && dst_kind < 10 );
const func_t func = funcs[src_kind][dst_kind];
CV_Assert( func != 0 );
func(src, dst);
}
示例6: initImpl
void cv::superres::SuperResolution::nextFrame(OutputArray frame)
{
isUmat_ = frame.isUMat();
if (firstCall_)
{
initImpl(frameSource_);
firstCall_ = false;
}
processImpl(frameSource_, frame);
}
示例7: calcBtvRegularization
void calcBtvRegularization(InputArray _src, OutputArray _dst, int btvKernelSize,
const std::vector<float>& btvWeights, const UMat & ubtvWeights)
{
CV_OCL_RUN(_dst.isUMat(),
ocl_calcBtvRegularization(_src, _dst, btvKernelSize, ubtvWeights))
(void)ubtvWeights;
typedef void (*func_t)(InputArray _src, OutputArray _dst, int btvKernelSize, const std::vector<float>& btvWeights);
static const func_t funcs[] =
{
0, calcBtvRegularizationImpl<float>, 0, calcBtvRegularizationImpl<Point3f>, 0
};
const func_t func = funcs[_src.channels()];
CV_Assert(func != 0);
func(_src, _dst, btvKernelSize, btvWeights);
}
示例8: copyTo
void UMat::copyTo(OutputArray _dst, InputArray _mask) const
{
if( _mask.empty() )
{
copyTo(_dst);
return;
}
#ifdef HAVE_OPENCL
int cn = channels(), mtype = _mask.type(), mdepth = CV_MAT_DEPTH(mtype), mcn = CV_MAT_CN(mtype);
CV_Assert( mdepth == CV_8U && (mcn == 1 || mcn == cn) );
if (ocl::useOpenCL() && _dst.isUMat() && dims <= 2)
{
UMatData * prevu = _dst.getUMat().u;
_dst.create( dims, size, type() );
UMat dst = _dst.getUMat();
bool haveDstUninit = false;
if( prevu != dst.u ) // do not leave dst uninitialized
haveDstUninit = true;
String opts = format("-D COPY_TO_MASK -D T1=%s -D scn=%d -D mcn=%d%s",
ocl::memopTypeToStr(depth()), cn, mcn,
haveDstUninit ? " -D HAVE_DST_UNINIT" : "");
ocl::Kernel k("copyToMask", ocl::core::copyset_oclsrc, opts);
if (!k.empty())
{
k.args(ocl::KernelArg::ReadOnlyNoSize(*this),
ocl::KernelArg::ReadOnlyNoSize(_mask.getUMat()),
haveDstUninit ? ocl::KernelArg::WriteOnly(dst) :
ocl::KernelArg::ReadWrite(dst));
size_t globalsize[2] = { cols, rows };
if (k.run(2, globalsize, NULL, false))
{
CV_IMPL_ADD(CV_IMPL_OCL);
return;
}
}
}
#endif
Mat src = getMat(ACCESS_READ);
src.copyTo(_dst, _mask);
}
示例9: convertTo
void UMat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const
{
bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON;
int stype = type(), cn = CV_MAT_CN(stype);
if( _type < 0 )
_type = _dst.fixedType() ? _dst.type() : stype;
else
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), cn);
int sdepth = CV_MAT_DEPTH(stype), ddepth = CV_MAT_DEPTH(_type);
if( sdepth == ddepth && noScale )
{
copyTo(_dst);
return;
}
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
bool needDouble = sdepth == CV_64F || ddepth == CV_64F;
if( dims <= 2 && cn && _dst.isUMat() && ocl::useOpenCL() &&
((needDouble && doubleSupport) || !needDouble) )
{
char cvt[40];
ocl::Kernel k("convertTo", ocl::core::convert_oclsrc,
format("-D srcT=%s -D dstT=%s -D convertToDT=%s%s", ocl::typeToStr(sdepth),
ocl::typeToStr(ddepth), ocl::convertTypeStr(CV_32F, ddepth, 1, cvt),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (!k.empty())
{
UMat src = *this;
_dst.create( size(), _type );
UMat dst = _dst.getUMat();
float alphaf = (float)alpha, betaf = (float)beta;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf);
size_t globalsize[2] = { dst.cols * cn, dst.rows };
if (k.run(2, globalsize, NULL, false))
return;
}
}
Mat m = getMat(ACCESS_READ);
m.convertTo(_dst, _type, alpha, beta);
}
示例10: upscale
void upscale(InputArray _src, OutputArray _dst, int scale)
{
int cn = _src.channels();
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
CV_OCL_RUN(_dst.isUMat(),
ocl_upscale(_src, _dst, scale))
typedef void (*func_t)(InputArray src, OutputArray dst, int scale);
static const func_t funcs[] =
{
0, upscaleImpl<float>, 0, upscaleImpl<Point3f>, upscaleImpl<Point4f>
};
const func_t func = funcs[cn];
CV_Assert(func != 0);
func(_src, _dst, scale);
}
示例11: calcBtvRegularization
void calcBtvRegularization(InputArray _src, OutputArray _dst, int btvKernelSize,
const std::vector<float>& btvWeights, const UMat & ubtvWeights)
{
CV_OCL_RUN(_dst.isUMat(),
ocl_calcBtvRegularization(_src, _dst, btvKernelSize, ubtvWeights))
CV_UNUSED(ubtvWeights);
if (_src.channels() == 1)
{
calcBtvRegularizationImpl<float>(_src, _dst, btvKernelSize, btvWeights);
}
else if (_src.channels() == 3)
{
calcBtvRegularizationImpl<Point3f>(_src, _dst, btvKernelSize, btvWeights);
}
else
{
CV_Error(Error::StsBadArg, "Unsupported number of channels in _src");
}
}
示例12: flip
void flip( InputArray _src, OutputArray _dst, int flip_mode )
{
CV_Assert( _src.dims() <= 2 );
CV_OCL_RUN( _dst.isUMat(), ocl_flip(_src,_dst, flip_mode))
Mat src = _src.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
size_t esz = src.elemSize();
if( flip_mode <= 0 )
flipVert( src.data, src.step, dst.data, dst.step, src.size(), esz );
else
flipHoriz( src.data, src.step, dst.data, dst.step, src.size(), esz );
if( flip_mode < 0 )
flipHoriz( dst.data, dst.step, dst.data, dst.step, dst.size(), esz );
}
示例13: copyTo
void UMat::copyTo(OutputArray _dst) const
{
int dtype = _dst.type();
if( _dst.fixedType() && dtype != type() )
{
CV_Assert( channels() == CV_MAT_CN(dtype) );
convertTo( _dst, dtype );
return;
}
if( empty() )
{
_dst.release();
return;
}
size_t i, sz[CV_MAX_DIM], srcofs[CV_MAX_DIM], dstofs[CV_MAX_DIM], esz = elemSize();
for( i = 0; i < (size_t)dims; i++ )
sz[i] = size.p[i];
sz[dims-1] *= esz;
ndoffset(srcofs);
srcofs[dims-1] *= esz;
_dst.create( dims, size.p, type() );
if( _dst.isUMat() )
{
UMat dst = _dst.getUMat();
if( u == dst.u && dst.offset == offset )
return;
if (u->currAllocator == dst.u->currAllocator)
{
dst.ndoffset(dstofs);
dstofs[dims-1] *= esz;
u->currAllocator->copy(u, dst.u, dims, sz, srcofs, step.p, dstofs, dst.step.p, false);
return;
}
}
Mat dst = _dst.getMat();
u->currAllocator->download(u, dst.data, dims, sz, srcofs, step.p, dst.step.p);
}
示例14: diffSign
void diffSign(InputArray _src1, OutputArray _src2, OutputArray _dst)
{
CV_OCL_RUN(_dst.isUMat(),
ocl_diffSign(_src1, _src2, _dst))
Mat src1 = _src1.getMat(), src2 = _src2.getMat();
_dst.create(src1.size(), src1.type());
Mat dst = _dst.getMat();
const int count = src1.cols * src1.channels();
for (int y = 0; y < src1.rows; ++y)
{
const float * const src1Ptr = src1.ptr<float>(y);
const float * const src2Ptr = src2.ptr<float>(y);
float* dstPtr = dst.ptr<float>(y);
for (int x = 0; x < count; ++x)
dstPtr[x] = diffSign(src1Ptr[x], src2Ptr[x]);
}
}
示例15: computeFeatures
//static
void QualityBRISQUE::computeFeatures(InputArray img, OutputArray features)
{
CV_Assert(features.needed());
CV_Assert(img.isMat());
CV_Assert(!img.getMat().empty());
auto mat = mat_convert(img.getMat());
const auto vals = ComputeBrisqueFeature(mat);
cv::Mat valmat( cv::Size( (int)vals.size(), 1 ), CV_32FC1, (void*)vals.data()); // create row vector, type depends on brisque_calc_element_type
if (features.isUMat())
valmat.copyTo(features.getUMatRef());
else if (features.isMat())
// how to move data instead?
// if calling this:
// features.getMatRef() = valmat;
// then shared data is erased when valmat is released, corrupting the data in the outputarray for the caller
valmat.copyTo(features.getMatRef());
else
CV_Error(cv::Error::StsNotImplemented, "Unsupported output type");
}