本文整理汇总了C++中OsiClpSolverInterface::getNumCols方法的典型用法代码示例。如果您正苦于以下问题:C++ OsiClpSolverInterface::getNumCols方法的具体用法?C++ OsiClpSolverInterface::getNumCols怎么用?C++ OsiClpSolverInterface::getNumCols使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类OsiClpSolverInterface
的用法示例。
在下文中一共展示了OsiClpSolverInterface::getNumCols方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main(int argc, char **argv)
{
char *f_name_lp, *last_dot_pos, f_name[256], *f_name_pos;
int i, ncol;
if((argc < 2) || (argc > 2)) {
printf("### ERROR: main(): Usage: One of the following\ncgl_data_test input_file_name.mps\ncgl_data_test input_file_name.lp\n");
exit(1);
}
f_name_lp = strdup(argv[1]);
f_name_pos = strrchr(f_name_lp, '/');
if(f_name_pos != NULL) {
strcpy(f_name, &(f_name_pos[1]));
}
else {
strcpy(f_name, f_name_lp);
}
last_dot_pos = strrchr(f_name, '.');
if(last_dot_pos != NULL) {
last_dot_pos = '\0';
}
OsiClpSolverInterface *clp = new OsiClpSolverInterface;
clp->messageHandler()->setLogLevel(0);
if(strcmp(&(f_name_lp[strlen(f_name_lp)-3]), ".lp") == 0) {
clp->readLp(f_name_lp);
}
else {
if(strcmp(&(f_name_lp[strlen(f_name_lp)-4]), ".mps") == 0) {
clp->readMps(f_name_lp);
}
else {
printf("### ERROR: unrecognized file type\n");
exit(1);
}
}
ncol = clp->getNumCols();
clp->initialSolve();
printf("LP value: %12.2f\n", clp->getObjValue());
OsiCuts cuts;
// Define parameters for CglRedSplit generator
CglParam cpar;
cpar.setMAX_SUPPORT(ncol+1);
CglRedSplitParam rspar(cpar);
// Create a cut generator with the given parameters
CglRedSplit cutGen(rspar);
char *colType = new char[ncol];
for(i=0; i<ncol; i++) {
if(clp->isContinuous(i)) {
colType[i] = 'C';
}
else {
colType[i] = 'I';
}
}
int round, max_rounds = 10;
for(round=0; round<max_rounds; round++) {
cutGen.generateCuts(*clp, cuts);
int ncuts = cuts.sizeRowCuts();
const OsiRowCut **newRowCuts = new const OsiRowCut * [ncuts];
for(i=0; i<ncuts; i++) {
newRowCuts[i] = &cuts.rowCut(i);
}
clp->applyRowCuts(ncuts, newRowCuts);
delete[] newRowCuts;
printf("round %4d: %4d generated cuts new objective value: %12.2f\n",
round, ncuts, clp->getObjValue());
clp->resolve();
if(clp->isAbandoned()) {
printf("###ERROR: Numerical difficulties in Solver\n");
exit(1);
}
if(clp->isProvenPrimalInfeasible()) {
printf("### WARNING: Problem is infeasible\n");
exit(1);
}
}
delete clp;
free(f_name_lp);
delete[] colType;
return(0);
}
示例2: setWhen
/*
Randomized Rounding Heuristic
Returns 1 if solution, 0 if not
*/
int
CbcHeuristicRandRound::solution(double & solutionValue,
double * betterSolution)
{
// rlh: Todo: Memory Cleanup
// std::cout << "Entering the Randomized Rounding Heuristic" << std::endl;
setWhen(1); // setWhen(1) didn't have the effect I expected (e.g., run once).
// Run only once.
//
// See if at root node
bool atRoot = model_->getNodeCount() == 0;
int passNumber = model_->getCurrentPassNumber();
// Just do once
if (!atRoot || passNumber > 1) {
// std::cout << "Leaving the Randomized Rounding Heuristic" << std::endl;
return 0;
}
std::cout << "Entering the Randomized Rounding Heuristic" << std::endl;
typedef struct {
int numberSolutions;
int maximumSolutions;
int numberColumns;
double ** solution;
int * numberUnsatisfied;
} clpSolution;
double start = CoinCpuTime();
numCouldRun_++; //
#ifdef HEURISTIC_INFORM
printf("Entering heuristic %s - nRuns %d numCould %d when %d\n",
heuristicName(),numRuns_,numCouldRun_,when_);
#endif
// Todo: Ask JJHF what "number of times
// the heuristic could run" means.
OsiSolverInterface * solver = model_->solver()->clone();
double primalTolerance ;
solver->getDblParam(OsiPrimalTolerance, primalTolerance) ;
OsiClpSolverInterface * clpSolver = dynamic_cast<OsiClpSolverInterface *> (solver);
assert (clpSolver);
ClpSimplex * simplex = clpSolver->getModelPtr();
// Initialize the structure holding the solutions for the Simplex iterations
clpSolution solutions;
// Set typeStruct field of ClpTrustedData struct to 1 to indicate
// desired behavior for RandRound heuristic (which is what?)
ClpTrustedData trustedSolutions;
trustedSolutions.typeStruct = 1;
trustedSolutions.data = &solutions;
solutions.numberSolutions = 0;
solutions.maximumSolutions = 0;
solutions.numberColumns = simplex->numberColumns();
solutions.solution = NULL;
solutions.numberUnsatisfied = NULL;
simplex->setTrustedUserPointer(&trustedSolutions);
// Solve from all slack to get some points
simplex->allSlackBasis();
// Calling primal() invalidates pointers to some rim vectors,
// like...row sense (!)
simplex->primal();
// 1. Okay - so a workaround would be to copy the data I want BEFORE
// calling primal.
// 2. Another approach is to ask the simplex solvers NOT to mess up my
// rims.
// 3. See freeCachedResults() for what is getting
// deleted. Everything else points into the structure.
// ...or use collower and colupper rather than rowsense.
// ..store address of where one of these
// Store the basic problem information
// -Get the number of columns, rows and rhs vector
int numCols = clpSolver->getNumCols();
int numRows = clpSolver->getNumRows();
// Find the integer variables (use columnType(?))
// One if not continuous, that is binary or general integer)
// columnType() = 0 continuous
// = 1 binary
// = 2 general integer
bool * varClassInt = new bool[numCols];
const char* columnType = clpSolver->columnType();
int numGenInt = 0;
for (int i = 0; i < numCols; i++) {
if (clpSolver->isContinuous(i))
varClassInt[i] = 0;
else
varClassInt[i] = 1;
if (columnType[i] == 2) numGenInt++;
}
//.........这里部分代码省略.........
示例3: main
//.........这里部分代码省略.........
CglRedSplit generator4;
// try larger limit
generator4.setLimit(200);
CglClique generator5;
generator5.setStarCliqueReport(false);
generator5.setRowCliqueReport(false);
CglMixedIntegerRounding2 mixedGen;
CglFlowCover flowGen;
// Add in generators
// Experiment with -1 and -99 etc
model.addCutGenerator(&generator1,-1,"Probing");
model.addCutGenerator(&generator2,-1,"Gomory");
model.addCutGenerator(&generator3,-1,"Knapsack");
// model.addCutGenerator(&generator4,-1,"RedSplit");
model.addCutGenerator(&generator5,-1,"Clique");
model.addCutGenerator(&flowGen,-1,"FlowCover");
model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding");
// Say we want timings
int numberGenerators = model.numberCutGenerators();
int iGenerator;
for (iGenerator=0;iGenerator<numberGenerators;iGenerator++) {
CbcCutGenerator * generator = model.cutGenerator(iGenerator);
generator->setTiming(true);
}
OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver());
// go faster stripes
if (osiclp) {
// Turn this off if you get problems
// Used to be automatically set
osiclp->setSpecialOptions(128);
if(osiclp->getNumRows()<300&&osiclp->getNumCols()<500) {
//osiclp->setupForRepeatedUse(2,0);
osiclp->setupForRepeatedUse(0,0);
}
}
// Uncommenting this should switch off all CBC messages
// model.messagesPointer()->setDetailMessages(10,10000,NULL);
// Allow rounding heuristic
CbcRounding heuristic1(model);
model.addHeuristic(&heuristic1);
// And local search when new solution found
CbcHeuristicLocal heuristic2(model);
model.addHeuristic(&heuristic2);
// Redundant definition of default branching (as Default == User)
CbcBranchUserDecision branch;
model.setBranchingMethod(&branch);
// Definition of node choice
CbcCompareUser compare;
model.setNodeComparison(compare);
// Do initial solve to continuous
model.initialSolve();
// Could tune more
double objValue = model.solver()->getObjSense()*model.solver()->getObjValue();
double minimumDropA=CoinMin(1.0,fabs(objValue)*1.0e-3+1.0e-4);
double minimumDrop= fabs(objValue)*1.0e-4+1.0e-4;
printf("min drop %g (A %g)\n",minimumDrop,minimumDropA);
示例4: main
//.........这里部分代码省略.........
//generator1.createCliques(*model.solver(),2,1000,true);
//generator1.setMode(0);
CglGomory generator2;
// try larger limit
generator2.setLimit(300);
CglKnapsackCover generator3;
CglOddHole generator4;
generator4.setMinimumViolation(0.005);
generator4.setMinimumViolationPer(0.00002);
// try larger limit
generator4.setMaximumEntries(200);
CglClique generator5;
generator5.setStarCliqueReport(false);
generator5.setRowCliqueReport(false);
CglMixedIntegerRounding mixedGen;
CglFlowCover flowGen;
// Add in generators
model.addCutGenerator(&generator1,-1,"Probing");
model.addCutGenerator(&generator2,-1,"Gomory");
model.addCutGenerator(&generator3,-1,"Knapsack");
model.addCutGenerator(&generator4,-1,"OddHole");
model.addCutGenerator(&generator5,-1,"Clique");
model.addCutGenerator(&flowGen,-1,"FlowCover");
model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding");
OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver());
// go faster stripes
if (osiclp->getNumRows()<300&&osiclp->getNumCols()<500) {
osiclp->setupForRepeatedUse(2,0);
printf("trying slightly less reliable but faster version (? Gomory cuts okay?)\n");
printf("may not be safe if doing cuts in tree which need accuracy (level 2 anyway)\n");
}
// Allow rounding heuristic
CbcRounding heuristic1(model);
model.addHeuristic(&heuristic1);
// And local search when new solution found
CbcHeuristicLocal heuristic2(model);
model.addHeuristic(&heuristic2);
// Redundant definition of default branching (as Default == User)
CbcBranchUserDecision branch;
model.setBranchingMethod(&branch);
// Definition of node choice
CbcCompareUser compare;
model.setNodeComparison(compare);
// Do initial solve to continuous
model.initialSolve();
// Could tune more
model.setMinimumDrop(CoinMin(1.0,
fabs(model.getMinimizationObjValue())*1.0e-3+1.0e-4));
if (model.getNumCols()<500)
model.setMaximumCutPassesAtRoot(-100); // always do 100 if possible
示例5: main
//.........这里部分代码省略.........
CglGomory generator2;
// try larger limit
generator2.setLimit(300);
CglKnapsackCover generator3;
CglRedSplit generator4;
// try larger limit
generator4.setLimit(200);
CglClique generator5;
generator5.setStarCliqueReport(false);
generator5.setRowCliqueReport(false);
CglMixedIntegerRounding2 mixedGen;
CglFlowCover flowGen;
// Add in generators
// Experiment with -1 and -99 etc
model.addCutGenerator(&generator1,-1,"Probing");
model.addCutGenerator(&generator2,-1,"Gomory");
model.addCutGenerator(&generator3,-1,"Knapsack");
// model.addCutGenerator(&generator4,-1,"RedSplit");
model.addCutGenerator(&generator5,-1,"Clique");
model.addCutGenerator(&flowGen,-1,"FlowCover");
model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding");
OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver());
// go faster stripes
if (osiclp) {
// Turn this off if you get problems
// Used to be automatically set
osiclp->setSpecialOptions(128);
if(osiclp->getNumRows()<300&&osiclp->getNumCols()<500) {
//osiclp->setupForRepeatedUse(2,1);
osiclp->setupForRepeatedUse(0,1);
}
}
// Uncommenting this should switch off most CBC messages
//model.messagesPointer()->setDetailMessages(10,5,5000);
// Allow rounding heuristic
CbcRounding heuristic1(model);
model.addHeuristic(&heuristic1);
// And local search when new solution found
CbcHeuristicLocal heuristic2(model);
model.addHeuristic(&heuristic2);
// Redundant definition of default branching (as Default == User)
CbcBranchUserDecision branch;
model.setBranchingMethod(&branch);
// Definition of node choice
CbcCompareUser compare;
model.setNodeComparison(compare);
// Do initial solve to continuous
model.initialSolve();
// Could tune more
double objValue = model.solver()->getObjSense()*model.solver()->getObjValue();
double minimumDropA=CoinMin(1.0,fabs(objValue)*1.0e-3+1.0e-4);
double minimumDrop= fabs(objValue)*1.0e-4+1.0e-4;
printf("min drop %g (A %g)\n",minimumDrop,minimumDropA);
示例6: main
//.........这里部分代码省略.........
CglClique generator5;
generator5.setStarCliqueReport(false);
generator5.setRowCliqueReport(false);
CglMixedIntegerRounding2 mixedGen;
CglFlowCover flowGen;
// Add in generators
// Experiment with -1 and -99 etc
// This is just for one particular model
model.addCutGenerator(&generator1,-1,"Probing");
//model.addCutGenerator(&generator2,-1,"Gomory");
model.addCutGenerator(&generator2,1,"Gomory");
model.addCutGenerator(&generator3,-1,"Knapsack");
// model.addCutGenerator(&generator4,-1,"RedSplit");
//model.addCutGenerator(&generator5,-1,"Clique");
model.addCutGenerator(&generator5,1,"Clique");
model.addCutGenerator(&flowGen,-1,"FlowCover");
model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding");
// Add stored cuts (making sure at all depths)
model.addCutGenerator(&stored,1,"Stored",true,false,false,-100,1,-1);
int numberGenerators = model.numberCutGenerators();
int iGenerator;
// Say we want timings
for (iGenerator=0;iGenerator<numberGenerators;iGenerator++) {
CbcCutGenerator * generator = model.cutGenerator(iGenerator);
generator->setTiming(true);
}
OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver());
// go faster stripes
if (osiclp) {
if(osiclp->getNumRows()<300&&osiclp->getNumCols()<500) {
//osiclp->setupForRepeatedUse(2,0);
osiclp->setupForRepeatedUse(0,0);
}
// Don't allow dual stuff
osiclp->setSpecialOptions(osiclp->specialOptions()|262144);
}
// Uncommenting this should switch off all CBC messages
// model.messagesPointer()->setDetailMessages(10,10000,NULL);
// No heuristics
// Do initial solve to continuous
model.initialSolve();
/* You need the next few lines -
a) so that cut generator will always be called again if it generated cuts
b) it is known that matrix is not enough to define problem so do cuts even
if it looks integer feasible at continuous optimum.
c) a solution found by strong branching will be ignored.
d) don't recompute a solution once found
*/
// Make sure cut generator called correctly (a)
iGenerator=numberGenerators-1;
model.cutGenerator(iGenerator)->setMustCallAgain(true);
// Say cuts needed at continuous (b)
OsiBabSolver oddCuts;
oddCuts.setSolverType(4);
// owing to bug must set after initialSolve
model.passInSolverCharacteristics(&oddCuts);
// Say no to all solutions by strong branching (c)
CbcFeasibilityNoStrong noStrong;
model.setProblemFeasibility(noStrong);
// Say don't recompute solution d)
model.setSpecialOptions(4);