本文整理汇总了C++中ObjCInterfaceDecl::isForwardDecl方法的典型用法代码示例。如果您正苦于以下问题:C++ ObjCInterfaceDecl::isForwardDecl方法的具体用法?C++ ObjCInterfaceDecl::isForwardDecl怎么用?C++ ObjCInterfaceDecl::isForwardDecl使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ObjCInterfaceDecl
的用法示例。
在下文中一共展示了ObjCInterfaceDecl::isForwardDecl方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: canApplyWeak
bool trans::canApplyWeak(ASTContext &Ctx, QualType type,
bool AllowOnUnknownClass) {
if (!Ctx.getLangOptions().ObjCRuntimeHasWeak)
return false;
QualType T = type;
if (T.isNull())
return false;
while (const PointerType *ptr = T->getAs<PointerType>())
T = ptr->getPointeeType();
if (const ObjCObjectPointerType *ObjT = T->getAs<ObjCObjectPointerType>()) {
ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl();
if (!AllowOnUnknownClass && (!Class || Class->getName() == "NSObject"))
return false; // id/NSObject is not safe for weak.
if (!AllowOnUnknownClass && Class->isForwardDecl())
return false; // forward classes are not verifiable, therefore not safe.
if (Class->isArcWeakrefUnavailable())
return false;
if (isClassInWeakBlacklist(Class))
return false;
}
return true;
}
示例2: BuildClassMessage
/// \param ReceiverType The type of the object receiving the
/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
/// type as that refers to. For a superclass send, this is the type of
/// the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this class message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBrac The location of the closing square bracket ']'.
///
/// \param Args The message arguments.
ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
SourceLocation SelectorLoc,
SourceLocation RBracLoc,
MultiExprArg ArgsIn) {
SourceLocation Loc = SuperLoc.isValid()? SuperLoc
: ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
if (LBracLoc.isInvalid()) {
Diag(Loc, diag::err_missing_open_square_message_send)
<< FixItHint::CreateInsertion(Loc, "[");
LBracLoc = Loc;
}
if (ReceiverType->isDependentType()) {
// If the receiver type is dependent, we can't type-check anything
// at this point. Build a dependent expression.
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
assert(SuperLoc.isInvalid() && "Message to super with dependent type");
return Owned(ObjCMessageExpr::Create(Context, ReceiverType,
VK_RValue, LBracLoc, ReceiverTypeInfo,
Sel, SelectorLoc, /*Method=*/0,
Args, NumArgs, RBracLoc));
}
// Find the class to which we are sending this message.
ObjCInterfaceDecl *Class = 0;
const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
if (!ClassType || !(Class = ClassType->getInterface())) {
Diag(Loc, diag::err_invalid_receiver_class_message)
<< ReceiverType;
return ExprError();
}
assert(Class && "We don't know which class we're messaging?");
(void)DiagnoseUseOfDecl(Class, Loc);
// Find the method we are messaging.
if (!Method) {
if (Class->isForwardDecl()) {
// A forward class used in messaging is treated as a 'Class'
Diag(Loc, diag::warn_receiver_forward_class) << Class->getDeclName();
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc));
if (Method)
Diag(Method->getLocation(), diag::note_method_sent_forward_class)
<< Method->getDeclName();
}
if (!Method)
Method = Class->lookupClassMethod(Sel);
// If we have an implementation in scope, check "private" methods.
if (!Method)
Method = LookupPrivateClassMethod(Sel, Class);
if (Method && DiagnoseUseOfDecl(Method, Loc))
return ExprError();
}
// Check the argument types and determine the result type.
QualType ReturnType;
ExprValueKind VK = VK_RValue;
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
if (CheckMessageArgumentTypes(Args, NumArgs, Sel, Method, true,
LBracLoc, RBracLoc, ReturnType, VK))
return ExprError();
if (Method && !Method->getResultType()->isVoidType() &&
RequireCompleteType(LBracLoc, Method->getResultType(),
diag::err_illegal_message_expr_incomplete_type))
return ExprError();
// Construct the appropriate ObjCMessageExpr.
Expr *Result;
if (SuperLoc.isValid())
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
SuperLoc, /*IsInstanceSuper=*/false,
ReceiverType, Sel, SelectorLoc,
//.........这里部分代码省略.........
示例3: ExprError
/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
/// objective C interface. This is a property reference expression.
ExprResult Sema::
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
Expr *BaseExpr, DeclarationName MemberName,
SourceLocation MemberLoc,
SourceLocation SuperLoc, QualType SuperType,
bool Super) {
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
if (IFace->isForwardDecl()) {
Diag(MemberLoc, diag::err_property_not_found_forward_class)
<< MemberName << QualType(OPT, 0);
Diag(IFace->getLocation(), diag::note_forward_class);
return ExprError();
}
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
QualType ResTy = PD->getType();
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
ResTy = Getter->getResultType();
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
VK_LValue, OK_ObjCProperty,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
VK_LValue, OK_ObjCProperty,
MemberLoc, BaseExpr));
}
// Check protocols on qualified interfaces.
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
VK_LValue,
OK_ObjCProperty,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
VK_LValue,
OK_ObjCProperty,
MemberLoc,
BaseExpr));
}
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
// FIXME: The logic for looking up nullary and unary selectors should be
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// May be founf in property's qualified list.
if (!Getter)
Getter = LookupMethodInQualifiedType(Sel, OPT, true);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
Getter = IFace->lookupPrivateMethod(Sel);
// Look through local category implementations associated with the class.
if (!Getter)
Getter = IFace->getCategoryInstanceMethod(Sel);
if (Getter) {
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), Member);
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
// May be founf in property's qualified list.
if (!Setter)
Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = IFace->lookupPrivateMethod(SetterSel);
}
//.........这里部分代码省略.........
示例4: CreateType
/// CreateType - get objective-c interface type.
llvm::DIType CGDebugInfo::CreateType(const ObjCInterfaceType *Ty,
llvm::DICompileUnit Unit) {
ObjCInterfaceDecl *Decl = Ty->getDecl();
unsigned Tag = llvm::dwarf::DW_TAG_structure_type;
SourceManager &SM = M->getContext().getSourceManager();
// Get overall information about the record type for the debug info.
std::string Name = Decl->getNameAsString();
llvm::DICompileUnit DefUnit = getOrCreateCompileUnit(Decl->getLocation());
unsigned Line = SM.getInstantiationLineNumber(Decl->getLocation());
// To handle recursive interface, we
// first generate a debug descriptor for the struct as a forward declaration.
// Then (if it is a definition) we go through and get debug info for all of
// its members. Finally, we create a descriptor for the complete type (which
// may refer to the forward decl if the struct is recursive) and replace all
// uses of the forward declaration with the final definition.
llvm::DIType FwdDecl =
DebugFactory.CreateCompositeType(Tag, Unit, Name, DefUnit, Line, 0, 0, 0, 0,
llvm::DIType(), llvm::DIArray());
// If this is just a forward declaration, return it.
if (Decl->isForwardDecl())
return FwdDecl;
// Otherwise, insert it into the TypeCache so that recursive uses will find
// it.
TypeCache[QualType(Ty, 0).getAsOpaquePtr()] = FwdDecl;
// Convert all the elements.
llvm::SmallVector<llvm::DIDescriptor, 16> EltTys;
ObjCInterfaceDecl *SClass = Decl->getSuperClass();
if (SClass) {
llvm::DIType SClassTy =
getOrCreateType(M->getContext().getObjCInterfaceType(SClass), Unit);
llvm::DIType InhTag =
DebugFactory.CreateDerivedType(llvm::dwarf::DW_TAG_inheritance,
Unit, "", Unit, 0, 0, 0,
0 /* offset */, 0, SClassTy);
EltTys.push_back(InhTag);
}
const ASTRecordLayout &RL = M->getContext().getASTObjCInterfaceLayout(Decl);
unsigned FieldNo = 0;
for (ObjCInterfaceDecl::ivar_iterator I = Decl->ivar_begin(),
E = Decl->ivar_end(); I != E; ++I, ++FieldNo) {
ObjCIvarDecl *Field = *I;
llvm::DIType FieldTy = getOrCreateType(Field->getType(), Unit);
std::string FieldName = Field->getNameAsString();
// Get the location for the field.
SourceLocation FieldDefLoc = Field->getLocation();
llvm::DICompileUnit FieldDefUnit = getOrCreateCompileUnit(FieldDefLoc);
unsigned FieldLine = SM.getInstantiationLineNumber(FieldDefLoc);
QualType FType = Field->getType();
uint64_t FieldSize = 0;
unsigned FieldAlign = 0;
if (!FType->isIncompleteArrayType()) {
// Bit size, align and offset of the type.
FieldSize = M->getContext().getTypeSize(FType);
Expr *BitWidth = Field->getBitWidth();
if (BitWidth)
FieldSize =
BitWidth->getIntegerConstantExprValue(M->getContext()).getZExtValue();
FieldAlign = M->getContext().getTypeAlign(FType);
}
uint64_t FieldOffset = RL.getFieldOffset(FieldNo);
unsigned Flags = 0;
if (Field->getAccessControl() == ObjCIvarDecl::Protected)
Flags = llvm::DIType::FlagProtected;
else if (Field->getAccessControl() == ObjCIvarDecl::Private)
Flags = llvm::DIType::FlagPrivate;
// Create a DW_TAG_member node to remember the offset of this field in the
// struct. FIXME: This is an absolutely insane way to capture this
// information. When we gut debug info, this should be fixed.
FieldTy = DebugFactory.CreateDerivedType(llvm::dwarf::DW_TAG_member, Unit,
FieldName, FieldDefUnit,
FieldLine, FieldSize, FieldAlign,
FieldOffset, Flags, FieldTy);
EltTys.push_back(FieldTy);
}
llvm::DIArray Elements =
DebugFactory.GetOrCreateArray(&EltTys[0], EltTys.size());
// Bit size, align and offset of the type.
//.........这里部分代码省略.........