当前位置: 首页>>代码示例>>C++>>正文


C++ NumericVector::add_vector方法代码示例

本文整理汇总了C++中NumericVector::add_vector方法的典型用法代码示例。如果您正苦于以下问题:C++ NumericVector::add_vector方法的具体用法?C++ NumericVector::add_vector怎么用?C++ NumericVector::add_vector使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NumericVector的用法示例。


在下文中一共展示了NumericVector::add_vector方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

void
MooseVariable::add(NumericVector<Number> & residual)
{
  if (_has_nodal_value)
    residual.add_vector(&_nodal_u[0], _dof_indices);

  if (_has_nodal_value_neighbor)
    residual.add_vector(&_nodal_u_neighbor[0], _dof_indices_neighbor);
}
开发者ID:mangerij,项目名称:moose,代码行数:9,代码来源:MooseVariable.C

示例2: assemble_A_and_F

void AssembleOptimization::assemble_A_and_F()
{
  A_matrix->zero();
  F_vector->zero();

  const MeshBase & mesh = _sys.get_mesh();

  const unsigned int dim = mesh.mesh_dimension();
  const unsigned int u_var = _sys.variable_number ("u");

  const DofMap & dof_map = _sys.get_dof_map();
  FEType fe_type = dof_map.variable_type(u_var);
  UniquePtr<FEBase> fe (FEBase::build(dim, fe_type));
  QGauss qrule (dim, fe_type.default_quadrature_order());
  fe->attach_quadrature_rule (&qrule);

  const std::vector<Real> & JxW = fe->get_JxW();
  const std::vector<std::vector<Real> > & phi = fe->get_phi();
  const std::vector<std::vector<RealGradient> > & dphi = fe->get_dphi();

  std::vector<dof_id_type> dof_indices;

  DenseMatrix<Number> Ke;
  DenseVector<Number> Fe;

  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

  for ( ; el != end_el; ++el)
    {
      const Elem * elem = *el;

      dof_map.dof_indices (elem, dof_indices);

      const unsigned int n_dofs = dof_indices.size();

      fe->reinit (elem);

      Ke.resize (n_dofs, n_dofs);
      Fe.resize (n_dofs);

      for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        {
          for (unsigned int dof_i=0; dof_i<n_dofs; dof_i++)
            {
              for (unsigned int dof_j=0; dof_j<n_dofs; dof_j++)
                {
                  Ke(dof_i, dof_j) += JxW[qp] * (dphi[dof_j][qp]* dphi[dof_i][qp]);
                }
              Fe(dof_i) += JxW[qp] * phi[dof_i][qp];
            }
        }

      A_matrix->add_matrix (Ke, dof_indices);
      F_vector->add_vector (Fe, dof_indices);
    }

  A_matrix->close();
  F_vector->close();
}
开发者ID:borisboutkov,项目名称:libmesh,代码行数:60,代码来源:optimization_ex2.C

示例3:

void SparseMatrix<T>::vector_mult_add (NumericVector<T>& dest,
				       const NumericVector<T>& arg) const
{
  /* This functionality is actually implemented in the \p
     NumericVector class.  */
  dest.add_vector(arg,*this);
}
开发者ID:mikegraham,项目名称:libmesh,代码行数:7,代码来源:sparse_matrix.C

示例4:

void
Assembly::addResidualBlock(NumericVector<Number> & residual, DenseVector<Number> & res_block, const std::vector<dof_id_type> & dof_indices, Real scaling_factor)
{
  if (dof_indices.size() > 0 && res_block.size())
  {
    _temp_dof_indices = dof_indices;
    _dof_map.constrain_element_vector(res_block, _temp_dof_indices, false);

    if (scaling_factor != 1.0)
    {
      _tmp_Re = res_block;
      _tmp_Re *= scaling_factor;
      residual.add_vector(_tmp_Re, _temp_dof_indices);
    }
    else
    {
      residual.add_vector(res_block, _temp_dof_indices);
    }
  }
}
开发者ID:Jieun2,项目名称:moose,代码行数:20,代码来源:Assembly.C

示例5: mooseAssert

void
Assembly::addCachedResidual(NumericVector<Number> & residual, Moose::KernelType type)
{
  std::vector<Real> & cached_residual_values = _cached_residual_values[type];
  std::vector<unsigned int> & cached_residual_rows = _cached_residual_rows[type];

  mooseAssert(cached_residual_values.size() == cached_residual_rows.size(), "Number of cached residuals and number of rows must match!");

  residual.add_vector(cached_residual_values, cached_residual_rows);

  if (_max_cached_residuals < cached_residual_values.size())
    _max_cached_residuals = cached_residual_values.size();

  // Try to be more efficient from now on
  // The 2 is just a fudge factor to keep us from having to grow the vector during assembly
  cached_residual_values.clear();
  cached_residual_values.reserve(_max_cached_residuals*2);

  cached_residual_rows.clear();
  cached_residual_rows.reserve(_max_cached_residuals*2);
}
开发者ID:Jieun2,项目名称:moose,代码行数:21,代码来源:Assembly.C

示例6: compute_residual


//.........这里部分代码省略.........
    std::vector<unsigned int> dof_indices;

    // Now we will loop over all the active elements in the mesh which
    // are local to this processor.
    // We will compute the element residual.
    residual.zero();

    MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
    const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

    for ( ; el != end_el; ++el)
    {
        // Store a pointer to the element we are currently
        // working on.  This allows for nicer syntax later.
        const Elem* elem = *el;

        // Get the degree of freedom indices for the
        // current element.  These define where in the global
        // matrix and right-hand-side this element will
        // contribute to.
        dof_map.dof_indices (elem, dof_indices);

        // Compute the element-specific data for the current
        // element.  This involves computing the location of the
        // quadrature points (q_point) and the shape functions
        // (phi, dphi) for the current element.
        fe->reinit (elem);

        // We use the resize member here because
        // the number of degrees of freedom might have changed from
        // the last element.  Note that this will be the case if the
        // element type is different (i.e. the last element was a
        // triangle, now we are on a quadrilateral).
        Re.resize (dof_indices.size());

        // Now we will build the residual. This involves
        // the construction of the matrix K and multiplication of it
        // with the current solution x. We rearrange this into two loops:
        // In the first, we calculate only the contribution of
        // K_ij*x_j which is independent of the row i. In the second loops,
        // we multiply with the row-dependent part and add it to the element
        // residual.

        for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        {
            Number u = 0;
            Gradient grad_u;

            for (unsigned int j=0; j<phi.size(); j++)
            {
                u      += phi[j][qp]*soln(dof_indices[j]);
                grad_u += dphi[j][qp]*soln(dof_indices[j]);
            }

            const Number K = 1./std::sqrt(1. + grad_u*grad_u);

            for (unsigned int i=0; i<phi.size(); i++)
                Re(i) += JxW[qp]*(
                             K*(dphi[i][qp]*grad_u) +
                             kappa*phi[i][qp]*u
                         );
        }

        // At this point the interior element integration has
        // been completed.  However, we have not yet addressed
        // boundary conditions.

        // The following loops over the sides of the element.
        // If the element has no neighbor on a side then that
        // side MUST live on a boundary of the domain.
        for (unsigned int side=0; side<elem->n_sides(); side++)
            if (elem->neighbor(side) == NULL)
            {
                // The value of the shape functions at the quadrature
                // points.
                const std::vector<std::vector<Real> >&  phi_face = fe_face->get_phi();

                // The Jacobian * Quadrature Weight at the quadrature
                // points on the face.
                const std::vector<Real>& JxW_face = fe_face->get_JxW();

                // Compute the shape function values on the element face.
                fe_face->reinit(elem, side);

                // Loop over the face quadrature points for integration.
                for (unsigned int qp=0; qp<qface.n_points(); qp++)
                {
                    // This is the right-hand-side contribution (f),
                    // which has to be subtracted from the current residual
                    for (unsigned int i=0; i<phi_face.size(); i++)
                        Re(i) -= JxW_face[qp]*sigma*phi_face[i][qp];
                }
            }

        dof_map.constrain_element_vector (Re, dof_indices);
        residual.add_vector (Re, dof_indices);
    }

    // That's it.
}
开发者ID:paulovieira,项目名称:libmesh,代码行数:101,代码来源:miscellaneous_ex3.C

示例7: assemble_A_and_F

void AssembleOptimization::assemble_A_and_F()
{
  A_matrix->zero();
  F_vector->zero();

  const MeshBase & mesh = _sys.get_mesh();

  const unsigned int dim = mesh.mesh_dimension();
  const unsigned int u_var = _sys.variable_number ("u");

  const DofMap & dof_map = _sys.get_dof_map();
  FEType fe_type = dof_map.variable_type(u_var);
  UniquePtr<FEBase> fe (FEBase::build(dim, fe_type));
  QGauss qrule (dim, fe_type.default_quadrature_order());
  fe->attach_quadrature_rule (&qrule);

  const std::vector<Real> & JxW = fe->get_JxW();
  const std::vector<std::vector<Real> > & phi = fe->get_phi();
  const std::vector<std::vector<RealGradient> > & dphi = fe->get_dphi();

  std::vector<dof_id_type> dof_indices;

  DenseMatrix<Number> Ke;
  DenseVector<Number> Fe;

  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

  for ( ; el != end_el; ++el)
    {
      const Elem * elem = *el;

      dof_map.dof_indices (elem, dof_indices);

      const unsigned int n_dofs = dof_indices.size();

      fe->reinit (elem);

      Ke.resize (n_dofs, n_dofs);
      Fe.resize (n_dofs);

      for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        {
          for (unsigned int dof_i=0; dof_i<n_dofs; dof_i++)
            {
              for (unsigned int dof_j=0; dof_j<n_dofs; dof_j++)
                {
                  Ke(dof_i, dof_j) += JxW[qp] * (dphi[dof_j][qp]* dphi[dof_i][qp]);
                }
              Fe(dof_i) += JxW[qp] * phi[dof_i][qp];
            }
        }

      // This will zero off-diagonal entries of Ke corresponding to
      // Dirichlet dofs.
      dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices);

      // We want the diagonal of constrained dofs to be zero too
      for (unsigned int local_dof_index=0; local_dof_index<n_dofs; local_dof_index++)
        {
          dof_id_type global_dof_index = dof_indices[local_dof_index];
          if (dof_map.is_constrained_dof(global_dof_index))
            {
              Ke(local_dof_index, local_dof_index) = 0.;
            }
        }

      A_matrix->add_matrix (Ke, dof_indices);
      F_vector->add_vector (Fe, dof_indices);
    }

  A_matrix->close();
  F_vector->close();
}
开发者ID:vityurkiv,项目名称:Ox,代码行数:74,代码来源:optimization_ex1.C

示例8: residual


//.........这里部分代码省略.........
    std::unique_ptr<FEBase> fe_face (FEBase::build(dim, fe_type));
    QGauss qface (dim-1, fe_type.default_quadrature_order());
    fe_face->attach_quadrature_rule (&qface);

    const std::vector<Real> & JxW = fe->get_JxW();
    const std::vector<std::vector<Real>> & phi = fe->get_phi();
    const std::vector<std::vector<RealGradient>> & dphi = fe->get_dphi();

    DenseVector<Number> Re;

    DenseSubVector<Number> Re_var[3] =
      {DenseSubVector<Number>(Re),
       DenseSubVector<Number>(Re),
       DenseSubVector<Number>(Re)};

    std::vector<dof_id_type> dof_indices;
    std::vector<std::vector<dof_id_type>> dof_indices_var(3);

    residual.zero();

    for (const auto & elem : mesh.active_local_element_ptr_range())
      {
        dof_map.dof_indices (elem, dof_indices);
        for (unsigned int var=0; var<3; var++)
          dof_map.dof_indices (elem, dof_indices_var[var], var);

        const unsigned int n_dofs = dof_indices.size();
        const unsigned int n_var_dofs = dof_indices_var[0].size();

        fe->reinit (elem);

        Re.resize (n_dofs);
        for (unsigned int var=0; var<3; var++)
          Re_var[var].reposition (var*n_var_dofs, n_var_dofs);

        for (unsigned int qp=0; qp<qrule.n_points(); qp++)
          {
            DenseVector<Number> u_vec(3);
            DenseMatrix<Number> grad_u(3, 3);
            for (unsigned int var_i=0; var_i<3; var_i++)
              {
                for (unsigned int j=0; j<n_var_dofs; j++)
                  u_vec(var_i) += phi[j][qp]*soln(dof_indices_var[var_i][j]);

                // Row is variable u, v, or w column is x, y, or z
                for (unsigned int var_j=0; var_j<3; var_j++)
                  for (unsigned int j=0; j<n_var_dofs; j++)
                    grad_u(var_i,var_j) += dphi[j][qp](var_j)*soln(dof_indices_var[var_i][j]);
              }

            DenseMatrix<Number> strain_tensor(3, 3);
            for (unsigned int i=0; i<3; i++)
              for (unsigned int j=0; j<3; j++)
                {
                  strain_tensor(i,j) += 0.5 * (grad_u(i,j) + grad_u(j,i));

                  for (unsigned int k=0; k<3; k++)
                    strain_tensor(i,j) += 0.5 * grad_u(k,i)*grad_u(k,j);
                }

            // Define the deformation gradient
            DenseMatrix<Number> F(3, 3);
            F = grad_u;
            for (unsigned int var=0; var<3; var++)
              F(var, var) += 1.;

            DenseMatrix<Number> stress_tensor(3, 3);

            for (unsigned int i=0; i<3; i++)
              for (unsigned int j=0; j<3; j++)
                for (unsigned int k=0; k<3; k++)
                  for (unsigned int l=0; l<3; l++)
                    stress_tensor(i,j) +=
                      elasticity_tensor(young_modulus, poisson_ratio, i, j, k, l) * strain_tensor(k,l);

            DenseVector<Number> f_vec(3);
            f_vec(0) = 0.;
            f_vec(1) = 0.;
            f_vec(2) = -forcing_magnitude;

            for (unsigned int dof_i=0; dof_i<n_var_dofs; dof_i++)
              for (unsigned int i=0; i<3; i++)
                {
                  for (unsigned int j=0; j<3; j++)
                    {
                      Number FxStress_ij = 0.;
                      for (unsigned int m=0; m<3; m++)
                        FxStress_ij += F(i,m) * stress_tensor(m,j);

                      Re_var[i](dof_i) += JxW[qp] * (-FxStress_ij * dphi[dof_i][qp](j));
                    }

                  Re_var[i](dof_i) += JxW[qp] * (f_vec(i) * phi[dof_i][qp]);
                }
          }

        dof_map.constrain_element_vector (Re, dof_indices);
        residual.add_vector (Re, dof_indices);
      }
  }
开发者ID:dschwen,项目名称:libmesh,代码行数:101,代码来源:systems_of_equations_ex7.C


注:本文中的NumericVector::add_vector方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。