当前位置: 首页>>代码示例>>C++>>正文


C++ Node_List::size方法代码示例

本文整理汇总了C++中Node_List::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Node_List::size方法的具体用法?C++ Node_List::size怎么用?C++ Node_List::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Node_List的用法示例。


在下文中一共展示了Node_List::size方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: schedule_local


//.........这里部分代码省略.........
  // All the prescheduled guys do not hold back internal nodes
  uint i3;
  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
    Node *n = block->get_node(i3);       // Get pre-scheduled
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j);
      if (get_block_for_node(m) == block) { // Local-block user
        int m_cnt = ready_cnt.at(m->_idx)-1;
        ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
      }
    }
  }

  Node_List delay;
  // Make a worklist
  Node_List worklist;
  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
    Node *m = block->get_node(i4);
    if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
      if (m->is_iteratively_computed()) {
        // Push induction variable increments last to allow other uses
        // of the phi to be scheduled first. The select() method breaks
        // ties in scheduling by worklist order.
        delay.push(m);
      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
        // Force the CreateEx to the top of the list so it's processed
        // first and ends up at the start of the block.
        worklist.insert(0, m);
      } else {
        worklist.push(m);         // Then on to worklist!
      }
    }
  }
  while (delay.size()) {
    Node* d = delay.pop();
    worklist.push(d);
  }

  // Warm up the 'next_call' heuristic bits
  needed_for_next_call(block, block->head(), next_call);

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      for (uint j=0; j< block->number_of_nodes(); j++) {
        Node     *n = block->get_node(j);
        int     idx = n->_idx;
        tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
        tty->print("latency:%3d  ", get_latency_for_node(n));
        tty->print("%4d: %s\n", idx, n->Name());
      }
    }
#endif

  uint max_idx = (uint)ready_cnt.length();
  // Pull from worklist and schedule
  while( worklist.size() ) {    // Worklist is not ready

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print("#   ready list:");
      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
        Node *n = worklist[i];      // Get Node on worklist
        tty->print(" %d", n->_idx);
      }
      tty->cr();
    }
开发者ID:dain,项目名称:graal,代码行数:67,代码来源:lcm.cpp

示例2: schedule_local

//------------------------------schedule_local---------------------------------
// Topological sort within a block.  Someday become a real scheduler.
bool Block::schedule_local(Matcher &matcher, Block_Array &bbs,int *ready_cnt, VectorSet &next_call, GrowableArray<uint> &node_latency) {
  // Already "sorted" are the block start Node (as the first entry), and
  // the block-ending Node and any trailing control projections.  We leave
  // these alone.  PhiNodes and ParmNodes are made to follow the block start
  // Node.  Everything else gets topo-sorted.

#ifndef PRODUCT
    if (TraceOptoPipelining) {
      tty->print("# before schedule_local\n");
      for (uint i = 0;i < _nodes.size();i++) {
        tty->print("# ");
        _nodes[i]->fast_dump();
      }
      tty->print("\n");
    }
#endif

  // RootNode is already sorted
  if( _nodes.size() == 1 ) return true;

  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
  uint node_cnt = end_idx();
  uint phi_cnt = 1;
  uint i;
  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
    Node *n = _nodes[i];
    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
        (n->is_Proj()  && n->in(0) == head()) ) {
      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
      _nodes.map(i,_nodes[phi_cnt]);
      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
    } else {                    // All others
      // Count block-local inputs to 'n'
      uint cnt = n->len();      // Input count
      uint local = 0;
      for( uint j=0; j<cnt; j++ ) {
        Node *m = n->in(j);
        if( m && bbs[m->_idx] == this && !m->is_top() )
          local++;              // One more block-local input
      }
      ready_cnt[n->_idx] = local; // Count em up

      // A few node types require changing a required edge to a precedence edge
      // before allocation.
      MachNode *m = n->is_Mach();
      if( UseConcMarkSweepGC ) {
        if( m && m->ideal_Opcode() == Op_StoreCM ) {
          // Note: Required edges with an index greater than oper_input_base
          // are not supported by the allocator.
          // Note2: Can only depend on unmatched edge being last,
          // can not depend on its absolute position.
          Node *oop_store = n->in(n->req() - 1);
          n->del_req(n->req() - 1);
          n->add_prec(oop_store);
          assert(bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
        }
      }
      if( m && m->ideal_Opcode() == Op_MemBarAcquire ) {
        Node *x = n->in(TypeFunc::Parms);
        n->del_req(TypeFunc::Parms);
        n->add_prec(x);
      }
    }
  }
  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
    ready_cnt[_nodes[i2]->_idx] = 0;

  // All the prescheduled guys do not hold back internal nodes
  uint i3;
  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
    Node *n = _nodes[i3];       // Get pre-scheduled
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j);
      if( bbs[m->_idx] ==this ) // Local-block user
        ready_cnt[m->_idx]--;   // Fix ready count
    }
  }

  // Make a worklist
  Node_List worklist;
  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
    Node *m = _nodes[i4];    
    if( !ready_cnt[m->_idx] )   // Zero ready count?
      worklist.push(m);         // Then on to worklist!
  }

  // Warm up the 'next_call' heuristic bits
  needed_for_next_call(_nodes[0], next_call, bbs);

#ifndef PRODUCT
    if (TraceOptoPipelining) {
      for (uint j=0; j<_nodes.size(); j++) {
        Node     *n = _nodes[j];
        int     idx = n->_idx;
        tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
        tty->print("latency:%3d  ", node_latency.at_grow(idx));
        tty->print("%4d: %s\n", idx, n->Name());
      }
//.........这里部分代码省略.........
开发者ID:fatman2021,项目名称:myforthprocessor,代码行数:101,代码来源:lcm.cpp

示例3: call_catch_cleanup

//------------------------------call_catch_cleanup-----------------------------
// If we inserted any instructions between a Call and his CatchNode,
// clone the instructions on all paths below the Catch.
void Block::call_catch_cleanup(Block_Array &bbs) {

  // End of region to clone
  uint end = end_idx();
  if( !_nodes[end]->is_Catch() ) return;
  // Start of region to clone
  uint beg = end;
  while( _nodes[beg-1]->Opcode() != Op_MachProj || 
        !_nodes[beg-1]->in(0)->is_Call() ) {
    beg--;
    assert(beg > 0,"Catch cleanup walking beyond block boundry");
  }
  if( beg == end ) return;

  // Clone along all Catch output paths.  Clone area between the 'beg' and
  // 'end' indices.
  for( uint i = 0; i < _num_succs; i++ ) {
    Block *sb = _succs[i];
    // Clone the entire area; ignoring the edge fixup for now.
    for( uint j = end; j > beg; j-- ) {
      Node *clone = _nodes[j-1]->clone();
      sb->_nodes.insert( 1, clone );
      bbs.map(clone->_idx,sb);
    }
  }


  // Fixup edges.  Check the def-use info per cloned Node
  for(uint i2 = beg; i2 < end; i2++ ) {
    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
    Node *n = _nodes[i2];        // Node that got cloned
    // Need DU safe iterator because of edge manipulation in calls.
    Node_List *out = new Node_List(Thread::current()->resource_area());
    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
      out->push(n->fast_out(j1));
    }
    uint max = out->size();
    for (uint j = 0; j < max; j++) {// For all users
      Node *use = out->pop();
      Block *buse = bbs[use->_idx];
      if( use->is_Phi() ) {
        for( uint k = 1; k < use->req(); k++ )
          if( use->in(k) == n ) 
            catch_cleanup_one_use( use, bbs[buse->pred(k)->_idx], n, this, bbs, beg, n_clone_idx, k );
      } else {
        catch_cleanup_one_use( use, buse, n, this, bbs, beg, n_clone_idx, -1 );
      }
    } // End for all users

  } // End of for all Nodes in cloned area

  // Remove the now-dead cloned ops
  for(uint i3 = beg; i3 < end; i3++ ) {
    _nodes[beg]->disconnect_inputs(NULL);
    _nodes.remove(beg);
  }

  // If the successor blocks have a CreateEx node, move it back to the top
  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
    Block *sb = _succs[i4];
    MachNode *cex = sb->_nodes[1+end-beg]->is_Mach();
    if( cex && cex->ideal_Opcode() == Op_CreateEx ) {
      sb->_nodes.remove(1+end-beg);
      sb->_nodes.insert(1,cex);
    }
  }
}
开发者ID:fatman2021,项目名称:myforthprocessor,代码行数:70,代码来源:lcm.cpp

示例4: schedule_local

//------------------------------schedule_local---------------------------------
// Topological sort within a block.  Someday become a real scheduler.
bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
  // Already "sorted" are the block start Node (as the first entry), and
  // the block-ending Node and any trailing control projections.  We leave
  // these alone.  PhiNodes and ParmNodes are made to follow the block start
  // Node.  Everything else gets topo-sorted.

#ifndef PRODUCT
    if (cfg->trace_opto_pipelining()) {
      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
      for (uint i = 0;i < _nodes.size();i++) {
        tty->print("# ");
        _nodes[i]->fast_dump();
      }
      tty->print_cr("#");
    }
#endif

  // RootNode is already sorted
  if( _nodes.size() == 1 ) return true;

  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
  uint node_cnt = end_idx();
  uint phi_cnt = 1;
  uint i;
  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
    Node *n = _nodes[i];
    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
        (n->is_Proj()  && n->in(0) == head()) ) {
      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
      _nodes.map(i,_nodes[phi_cnt]);
      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
    } else {                    // All others
      // Count block-local inputs to 'n'
      uint cnt = n->len();      // Input count
      uint local = 0;
      for( uint j=0; j<cnt; j++ ) {
        Node *m = n->in(j);
        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
          local++;              // One more block-local input
      }
      ready_cnt[n->_idx] = local; // Count em up

      // A few node types require changing a required edge to a precedence edge
      // before allocation.
      if( UseConcMarkSweepGC || UseG1GC ) {
        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
          // Note: Required edges with an index greater than oper_input_base
          // are not supported by the allocator.
          // Note2: Can only depend on unmatched edge being last,
          // can not depend on its absolute position.
          Node *oop_store = n->in(n->req() - 1);
          n->del_req(n->req() - 1);
          n->add_prec(oop_store);
          assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
        }
      }
      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
        // MemBarAcquire could be created without Precedent edge.
        // del_req() replaces the specified edge with the last input edge
        // and then removes the last edge. If the specified edge > number of
        // edges the last edge will be moved outside of the input edges array
        // and the edge will be lost. This is why this code should be
        // executed only when Precedent (== TypeFunc::Parms) edge is present.
        Node *x = n->in(TypeFunc::Parms);
        n->del_req(TypeFunc::Parms);
        n->add_prec(x);
      }
    }
  }
  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
    ready_cnt[_nodes[i2]->_idx] = 0;

  // All the prescheduled guys do not hold back internal nodes
  uint i3;
  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
    Node *n = _nodes[i3];       // Get pre-scheduled
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j);
      if( cfg->_bbs[m->_idx] ==this ) // Local-block user
        ready_cnt[m->_idx]--;   // Fix ready count
    }
  }

  Node_List delay;
  // Make a worklist
  Node_List worklist;
  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
    Node *m = _nodes[i4];
    if( !ready_cnt[m->_idx] ) {   // Zero ready count?
      if (m->is_iteratively_computed()) {
        // Push induction variable increments last to allow other uses
        // of the phi to be scheduled first. The select() method breaks
        // ties in scheduling by worklist order.
        delay.push(m);
      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
        // Force the CreateEx to the top of the list so it's processed
//.........这里部分代码省略.........
开发者ID:AllenWeb,项目名称:openjdk-1,代码行数:101,代码来源:lcm.cpp


注:本文中的Node_List::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。