当前位置: 首页>>代码示例>>C++>>正文


C++ Neighborhood::size方法代码示例

本文整理汇总了C++中Neighborhood::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Neighborhood::size方法的具体用法?C++ Neighborhood::size怎么用?C++ Neighborhood::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Neighborhood的用法示例。


在下文中一共展示了Neighborhood::size方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: connectedComponents

void Application::connectedComponents(SparseGraph &G,
				      Vector<Neighborhood> &components)
{
  int N=G.getNumVertices(), componentId=1;
  Array1D<bool> mark(N);
  mark.setAllTo(false);
  for(VertexId i=0 ; i<N ; ++i) {
    if(mark[i]) continue;
    Neighborhood component;
    dfs(G,i,mark,component);
    components.push_back(component);
    int size=component.size();
    cout<<"Component #"<<componentId++<<" "<<size<<" vertices:"<<endl;
    for(Neighborhood::iterator cur=component.begin(), end=component.end() ; 
	cur!=end ; ++cur) {
      VertexId id=*cur;
      cout<<G.getLabel(id)<<"\t";
    }
    cout<<endl;
  }
}
开发者ID:bmajoros,项目名称:util,代码行数:21,代码来源:connected-components.C

示例2: getNeighborhood

Neighborhood getNeighborhood(const QStringList &simmats)
{
    Neighborhood neighborhood;

    float globalMax = -std::numeric_limits<float>::max();
    float globalMin = std::numeric_limits<float>::max();
    int numGalleries = (int)sqrt((float)simmats.size());
    if (numGalleries*numGalleries != simmats.size())
        qFatal("Incorrect number of similarity matrices.");

    // Process each simmat
    for (int i=0; i<numGalleries; i++) {
        QVector<Neighbors> allNeighbors;

        int currentRows = -1;
        int columnOffset = 0;
        for (int j=0; j<numGalleries; j++) {
            cv::Mat m = BEE::readSimmat(simmats[i*numGalleries+j]);
            if (j==0) {
                currentRows = m.rows;
                allNeighbors.resize(currentRows);
            }
            if (currentRows != m.rows) qFatal("Row count mismatch.");

            // Get data row by row
            for (int k=0; k<m.rows; k++) {
                Neighbors &neighbors = allNeighbors[k];
                neighbors.reserve(neighbors.size() + m.cols);
                for (int l=0; l<m.cols; l++) {
                    float val = m.at<float>(k,l);
                    if ((i==j) && (k==l)) continue; // Skips self-similarity scores

                    if ((val != -std::numeric_limits<float>::infinity()) &&
                        (val != std::numeric_limits<float>::infinity())) {
                        globalMax = std::max(globalMax, val);
                        globalMin = std::min(globalMin, val);
                    }
                    neighbors.append(Neighbor(l+columnOffset, val));
                }
            }

            columnOffset += m.cols;
        }

        // Keep the top matches
        for (int j=0; j<allNeighbors.size(); j++) {
            Neighbors &val = allNeighbors[j];
            const int cutoff = 20; // Somewhat arbitrary number of neighbors to keep
            int keep = std::min(cutoff, val.size());
            std::partial_sort(val.begin(), val.begin()+keep, val.end(), compareNeighbors);
            neighborhood.append((Neighbors)val.mid(0, keep));
        }
    }

    // Normalize scores
    for (int i=0; i<neighborhood.size(); i++) {
        Neighbors &neighbors = neighborhood[i];
        for (int j=0; j<neighbors.size(); j++) {
            Neighbor &neighbor = neighbors[j];
            if (neighbor.second == -std::numeric_limits<float>::infinity())
                neighbor.second = 0;
            else if (neighbor.second == std::numeric_limits<float>::infinity())
                neighbor.second = 1;
            else
                neighbor.second = (neighbor.second - globalMin) / (globalMax - globalMin);
        }
    }

    return neighborhood;
}
开发者ID:Alegzandra,项目名称:openbr,代码行数:70,代码来源:cluster.cpp

示例3: ClusterGallery

// Zhu et al. "A Rank-Order Distance based Clustering Algorithm for Face Tagging", CVPR 2011
br::Clusters br::ClusterGallery(const QStringList &simmats, float aggressiveness, const QString &csv)
{
    qDebug("Clustering %d simmat(s)", simmats.size());

    // Read in gallery parts, keeping top neighbors of each template
    Neighborhood neighborhood = getNeighborhood(simmats);
    const int cutoff = neighborhood.first().size();
    const float threshold = 3*cutoff/4 * aggressiveness/5;

    // Initialize clusters
    Clusters clusters(neighborhood.size());
    for (int i=0; i<neighborhood.size(); i++)
        clusters[i].append(i);

    bool done = false;
    while (!done) {
        // nextClusterIds[i] = j means that cluster i is set to merge into cluster j
        QVector<int> nextClusterIDs(neighborhood.size());
        for (int i=0; i<neighborhood.size(); i++) nextClusterIDs[i] = i;

        // For each cluster
        for (int clusterID=0; clusterID<neighborhood.size(); clusterID++) {
            const Neighbors &neighbors = neighborhood[clusterID];
            int nextClusterID = nextClusterIDs[clusterID];

            // Check its neighbors
            foreach (const Neighbor &neighbor, neighbors) {
                int neighborID = neighbor.first;
                int nextNeighborID = nextClusterIDs[neighborID];

                // Don't bother if they have already merged
                if (nextNeighborID == nextClusterID) continue;

                // Flag for merge if similar enough
                if (normalizedROD(neighborhood, clusterID, neighborID) < threshold) {
                    if (nextClusterID < nextNeighborID) nextClusterIDs[neighborID] = nextClusterID;
                    else                                nextClusterIDs[clusterID] = nextNeighborID;
                }
            }
        }

        // Transitive merge
        for (int i=0; i<neighborhood.size(); i++) {
            int nextClusterID = i;
            while (nextClusterID != nextClusterIDs[nextClusterID]) {
                assert(nextClusterIDs[nextClusterID] < nextClusterID);
                nextClusterID = nextClusterIDs[nextClusterID];
            }
            nextClusterIDs[i] = nextClusterID;
        }

        // Construct new clusters
        QHash<int, int> clusterIDLUT;
        QList<int> allClusterIDs = QSet<int>::fromList(nextClusterIDs.toList()).values();
        for (int i=0; i<neighborhood.size(); i++)
            clusterIDLUT[i] = allClusterIDs.indexOf(nextClusterIDs[i]);

        Clusters newClusters(allClusterIDs.size());
        Neighborhood newNeighborhood(allClusterIDs.size());

        for (int i=0; i<neighborhood.size(); i++) {
            int newID = clusterIDLUT[i];
            newClusters[newID].append(clusters[i]);
            newNeighborhood[newID].append(neighborhood[i]);
        }

        // Update indices and trim
        for (int i=0; i<newNeighborhood.size(); i++) {
            Neighbors &neighbors = newNeighborhood[i];
            int size = qMin(neighbors.size(),cutoff);
            std::partial_sort(neighbors.begin(), neighbors.begin()+size, neighbors.end(), compareNeighbors);
            for (int j=0; j<size; j++)
                neighbors[j].first = clusterIDLUT[j];
            neighbors = neighbors.mid(0, cutoff);
        }

        // Update results
        done = true; //(newClusters.size() >= clusters.size());
        clusters = newClusters;
        neighborhood = newNeighborhood;
    }
开发者ID:Alegzandra,项目名称:openbr,代码行数:82,代码来源:cluster.cpp


注:本文中的Neighborhood::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。