当前位置: 首页>>代码示例>>C++>>正文


C++ NViewDataSet::ExportToPLY方法代码示例

本文整理汇总了C++中NViewDataSet::ExportToPLY方法的典型用法代码示例。如果您正苦于以下问题:C++ NViewDataSet::ExportToPLY方法的具体用法?C++ NViewDataSet::ExportToPLY怎么用?C++ NViewDataSet::ExportToPLY使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NViewDataSet的用法示例。


在下文中一共展示了NViewDataSet::ExportToPLY方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: kernel

TEST(Resection_L_Infinity, Robust_OneOutlier) {

  const int nViews = 3;
  const int nbPoints = 20;
  const NViewDataSet d = NRealisticCamerasRing(nViews, nbPoints,
    nViewDatasetConfigurator(1,1,0,0,5,0)); // Suppose a camera with Unit matrix as K

  d.ExportToPLY("test_Before_Infinity.ply");
  //-- Modify a dataset (set to 0 and parse new value) (Assert good values)
  NViewDataSet d2 = d;

  const int nResectionCameraIndex = 2;
  //-- Set to 0 the future computed data to be sure of computation results :
  d2._R[nResectionCameraIndex] = Mat3::Zero();
  d2._t[nResectionCameraIndex] = Vec3::Zero();

  // Set 20% of the 3D point as outlier
  const int nbOutlier = nbPoints*0.2;
  for (int i=0; i < nbOutlier; ++i)
  {
    d2._X.col(i)(0) += 120.0;
    d2._X.col(i)(1) += -60.0;
    d2._X.col(i)(2) += 80.0;
  }

  // Solve the problem and check that fitted value are good enough
  {
    typedef  lInfinityCV::kernel::l1PoseResectionKernel KernelType;
    const Mat & pt2D = d2._x[nResectionCameraIndex];
    const Mat & pt3D = d2._X;
    KernelType kernel(pt2D, pt3D);
    ScorerEvaluator<KernelType> scorer(Square(0.1)); //Highly intolerant for the test
    Mat34 P = MaxConsensus(kernel, scorer, NULL, 128);

    // Check that Projection matrix is near to the GT :
    Mat34 GT_ProjectionMatrix = d.P(nResectionCameraIndex).array()
      / d.P(nResectionCameraIndex).norm();
    Mat34 COMPUTED_ProjectionMatrix = P.array() / P.norm();

    // Extract K[R|t]
    Mat3 R,K;
    Vec3 t;
    KRt_From_P(P, &K, &R, &t);

    d2._R[nResectionCameraIndex] = R;
    d2._t[nResectionCameraIndex] = t;

    //CHeck matrix to GT, and residual
    EXPECT_NEAR( 0.0, FrobeniusDistance(GT_ProjectionMatrix, COMPUTED_ProjectionMatrix), 1e-3 );
    Mat pt4D = VStack(pt3D, Mat(Vec::Ones(pt3D.cols()).transpose()));
    EXPECT_NEAR( 0.0, RootMeanSquareError(pt2D, pt4D, COMPUTED_ProjectionMatrix), 1e-1);
  }
  d2.ExportToPLY("test_After_Infinity.ply");
}
开发者ID:AnkurAgarwal1989,项目名称:openMVG,代码行数:54,代码来源:resection_robust_test.cpp

示例2: visibleCamPosToSVGSurface

TEST(translation_averaging, globalTi_from_tijs_softl1_Ceres) {

  const int focal = 1000;
  const int principal_Point = 500;
  //-- Setup a circular camera rig or "cardiod".
  const int iNviews = 12;
  const int iNbPoints = 6;

  const bool bCardiod = true;
  const bool bRelative_Translation_PerTriplet = false;
  std::vector<openMVG::relativeInfo > vec_relative_estimates;

  const NViewDataSet d =
    Setup_RelativeTranslations_AndNviewDataset
    (
      vec_relative_estimates,
      focal, principal_Point, iNviews, iNbPoints,
      bCardiod, bRelative_Translation_PerTriplet
    );

  d.ExportToPLY("global_translations_from_Tij_GT.ply");
  visibleCamPosToSVGSurface(d._C, "global_translations_from_Tij_GT.svg");

  // Solve the translation averaging problem:
  std::vector<Vec3> vec_translations;
  EXPECT_TRUE(solve_translations_problem_softl1(
    vec_relative_estimates, bRelative_Translation_PerTriplet, iNviews, vec_translations));

  EXPECT_EQ(iNviews, vec_translations.size());

  // Check accuracy of the found translations
  for (unsigned i = 0; i < iNviews; ++i)
  {
    const Vec3 t = vec_translations[i];
    const Mat3 & Ri = d._R[i];
    const Vec3 C_computed = - Ri.transpose() * t;

    const Vec3 C_GT = d._C[i] - d._C[0];

    //-- Check that found camera position is equal to GT value
    if (i==0)  {
      EXPECT_MATRIX_NEAR(C_computed, C_GT, 1e-6);
    }
    else  {
     EXPECT_NEAR(0.0, DistanceLInfinity(C_computed.normalized(), C_GT.normalized()), 1e-6);
    }
  }
}
开发者ID:ChristianHeckl,项目名称:Natron,代码行数:48,代码来源:translation_averaging_test.cpp

示例3: NRealisticCamerasCardioid

TEST(translation_averaging, globalTi_from_tijs_Triplets_ECCV14) {

  int focal = 1000;
  int principal_Point = 500;
  //-- Setup a circular camera rig or "cardioid".
  const int iNviews = 12;
  const int iNbPoints = 6;
  NViewDataSet d =
    //NRealisticCamerasRing(
    NRealisticCamerasCardioid(
    iNviews, iNbPoints,
    nViewDatasetConfigurator(focal,focal,principal_Point,principal_Point,5,0));

  d.ExportToPLY("global_translations_from_triplets_GT.ply");

  visibleCamPosToSVGSurface(d._C, "global_translations_from_triplets_GT.svg");

  // List successive triplets of the large loop of camera
  std::vector< graph::Triplet > vec_triplets;
  for (size_t i = 0; i < iNviews; ++i)
  {
    const size_t iPlus1 = modifiedMod(i+1,iNviews);
    const size_t iPlus2 = modifiedMod(i+2,iNviews);
    //-- sort the triplet index to have a monotonic ascending series of value
    size_t triplet[3] = {i, iPlus1, iPlus2};
    std::sort(&triplet[0], &triplet[3]);
    vec_triplets.push_back(Triplet(triplet[0],triplet[1],triplet[2]));
  }

  //- For each triplet compute relative translations and rotations motions
  std::vector<openMVG::relativeInfo > vec_initialEstimates;

  for (size_t i = 0; i < vec_triplets.size(); ++i)
  {
    const graph::Triplet & triplet = vec_triplets[i];
    size_t I = triplet.i, J = triplet.j , K = triplet.k;

    //-- Build camera alias over GT translations and rotations:
    const Mat3 & RI = d._R[I];
    const Mat3 & RJ = d._R[J];
    const Mat3 & RK = d._R[K];
    const Vec3 & ti = d._t[I];
    const Vec3 & tj = d._t[J];
    const Vec3 & tk = d._t[K];

    //-- Build relatives motions (that feeds the Linear program formulation)
    {
      Mat3 RijGt;
      Vec3 tij;
      RelativeCameraMotion(RI, ti, RJ, tj, &RijGt, &tij);
      vec_initialEstimates.push_back(
        std::make_pair(std::make_pair(I, J), std::make_pair(RijGt, tij)));

      Mat3 RjkGt;
      Vec3 tjk;
      RelativeCameraMotion(RJ, tj, RK, tk, &RjkGt, &tjk);
      vec_initialEstimates.push_back(
        std::make_pair(std::make_pair(J, K), std::make_pair(RjkGt, tjk)));

      Mat3 RikGt;
      Vec3 tik;
      RelativeCameraMotion(RI, ti, RK, tk, &RikGt, &tik);
      vec_initialEstimates.push_back(
        std::make_pair(std::make_pair(I, K), std::make_pair(RikGt, tik)));
    }
  }

  //-- Compute the global translations from the triplets of heading directions
  //-   with the Kyle method
  std::vector<int> vec_edges;
  vec_edges.reserve(vec_initialEstimates.size() * 2);
  std::vector<double> vec_poses;
  vec_poses.reserve(vec_initialEstimates.size() * 3);
  std::vector<double> vec_weights;
  vec_weights.reserve(vec_initialEstimates.size());

  for(int i=0; i < vec_initialEstimates.size(); ++i)
  {
    const openMVG::relativeInfo & rel = vec_initialEstimates[i];
    vec_edges.push_back(rel.first.first);
    vec_edges.push_back(rel.first.second);

    const Vec3 EdgeDirection = -(d._R[rel.first.second].transpose() * rel.second.second.normalized());

    vec_poses.push_back(EdgeDirection(0));
    vec_poses.push_back(EdgeDirection(1));
    vec_poses.push_back(EdgeDirection(2));

    vec_weights.push_back(1.0);
  }

  const double function_tolerance=1e-7, parameter_tolerance=1e-8;
  const int max_iterations = 500;

  const double loss_width = 0.0;

  std::vector<double> X(iNviews*3);

  EXPECT_TRUE(
    solve_translations_problem(
//.........这里部分代码省略.........
开发者ID:PierreLothe,项目名称:openMVG,代码行数:101,代码来源:translation_averaging_test.cpp

示例4: solverLP

TEST(translation_averaging, globalTi_from_tijs_Triplets) {

  int focal = 1000;
  int principal_Point = 500;
  //-- Setup a circular camera rig or "cardiod".
  const int iNviews = 12;
  const int iNbPoints = 6;
  NViewDataSet d =
    //NRealisticCamerasRing(
      NRealisticCamerasCardioid(
      iNviews, iNbPoints,
      nViewDatasetConfigurator(focal,focal,principal_Point,principal_Point,5,0));

  d.ExportToPLY("global_translations_from_triplets_GT.ply");

  visibleCamPosToSVGSurface(d._C, "global_translations_from_triplets_GT.svg");

  // List sucessives triplets of the large loop of camera
  std::vector< graphUtils::Triplet > vec_triplets;
  for (size_t i = 0; i < iNviews; ++i)
  {
    const size_t iPlus1 = modifiedMod(i+1,iNviews);
    const size_t iPlus2 = modifiedMod(i+2,iNviews);
    //-- sort the triplet index to have a monotic ascending series of value
    size_t triplet[3] = {i, iPlus1, iPlus2};
    std::sort(&triplet[0], &triplet[3]);
    vec_triplets.push_back(Triplet(triplet[0],triplet[1],triplet[2]));
  }

  //- For each triplet compute relative translations and rotations motions
  std::vector<openMVG::lInfinityCV::relativeInfo > vec_initialEstimates;

  for (size_t i = 0; i < vec_triplets.size(); ++i)
  {
    const graphUtils::Triplet & triplet = vec_triplets[i];
    size_t I = triplet.i, J = triplet.j , K = triplet.k;

    //-- Build camera alias over GT translations and rotations:
    const Mat3 & RI = d._R[I];
    const Mat3 & RJ = d._R[J];
    const Mat3 & RK = d._R[K];
    const Vec3 & ti = d._t[I];
    const Vec3 & tj = d._t[J];
    const Vec3 & tk = d._t[K];

    //-- Build relatives motions (that feeds the Linear program formulation)
    {
      Mat3 RijGt;
      Vec3 tij;
      RelativeCameraMotion(RI, ti, RJ, tj, &RijGt, &tij);
      vec_initialEstimates.push_back(
        std::make_pair(std::make_pair(I, J), std::make_pair(RijGt, tij)));

      Mat3 RjkGt;
      Vec3 tjk;
      RelativeCameraMotion(RJ, tj, RK, tk, &RjkGt, &tjk);
      vec_initialEstimates.push_back(
        std::make_pair(std::make_pair(J, K), std::make_pair(RjkGt, tjk)));

      Mat3 RikGt;
      Vec3 tik;
      RelativeCameraMotion(RI, ti, RK, tk, &RikGt, &tik);
      vec_initialEstimates.push_back(
        std::make_pair(std::make_pair(I, K), std::make_pair(RikGt, tik)));
    }
  }

  //-- Compute the global translations from the triplets of heading directions
  //-   with the L_infinity optimization

  std::vector<double> vec_solution(iNviews*3 + vec_initialEstimates.size()/3 + 1);
  double gamma = -1.0;

  //- a. Setup the LP solver,
  //- b. Setup the constraints generator (for the dedicated L_inf problem),
  //- c. Build constraints and solve the problem,
  //- d. Get back the estimated parameters.

  //- a. Setup the LP solver,
  OSI_CLP_SolverWrapper solverLP(vec_solution.size());

  //- b. Setup the constraints generator (for the dedicated L_inf problem),
  Tifromtij_ConstraintBuilder_OneLambdaPerTrif cstBuilder(vec_initialEstimates);

  //- c. Build constraints and solve the problem (Setup constraints and solver)
  LP_Constraints_Sparse constraint;
  cstBuilder.Build(constraint);
  solverLP.setup(constraint);
  //-- Solving
  EXPECT_TRUE(solverLP.solve()); // the linear program must have a solution

  //- d. Get back the estimated parameters.
  solverLP.getSolution(vec_solution);
  gamma = vec_solution[vec_solution.size()-1];

  //--
  //-- Unit test checking about the found solution
  //--
  EXPECT_NEAR(0.0, gamma, 1e-6); // Gamma must be 0, no noise, perfect data have been sent

//.........这里部分代码省略.........
开发者ID:AnkurAgarwal1989,项目名称:openMVG,代码行数:101,代码来源:global_translations_fromTriplets_test.cpp

示例5: megaMat

TEST(Translation_Structure_L_Infinity, OSICLP_SOLVER) {

  const size_t kViewNum = 3;
  const size_t kPointsNum = 6;
  const NViewDataSet d = NRealisticCamerasRing(kViewNum, kPointsNum,
    NViewDatasetConfigurator(1,1,0,0,5,0)); // 假设相机内参为单位阵

  d.ExportToPLY("test_Before_Infinity.ply");
  // 对所有点进行三角化测试
  NViewDataSet d2 = d;

  //-- Set to 0 the future computed data to be sure of computation results :
  d2.point_3d_.fill(0); //Set _Xi of dataset 2 to 0 to be sure of new data computation
  std::fill(d2.translation_vector_.begin(), d2.translation_vector_.end(), Vec3(0.0,0.0,0.0));

  //Create the mega matrix
  Mat megaMat(4, d.actual_camera_num_*d.projected_points_[0].cols());
  {
    size_t cpt = 0;
    for (size_t i=0; i<d.actual_camera_num_;++i)
    {
      const size_t camera_index = i;
      for (size_t j=0; j < d.projected_points_[0].cols(); ++j)
      {
        megaMat(0,cpt) = d.projected_points_[camera_index].col(j)(0);
        megaMat(1,cpt) = d.projected_points_[camera_index].col(j)(1);
        megaMat(2,cpt) = j;
        megaMat(3,cpt) = camera_index;
        cpt++;
      }
    }
  }

  // Solve the problem and check that fitted value are good enough
  {
    std::vector<double> vec_solution((kViewNum + kPointsNum)*3);

    OSI_CLP_SolverWrapper wrapper_osiclp_solver(vec_solution.size());
    Translation_Structure_L1_ConstraintBuilder constraint_builder( d.rotation_matrix_, megaMat);
    EXPECT_TRUE(
      (BisectionLinearProgramming<Translation_Structure_L1_ConstraintBuilder, LP_Constraints_Sparse>(
      wrapper_osiclp_solver,
      constraint_builder,
      &vec_solution,
      1.0,
      0.0))
    );

    // Move computed value to dataset for residual estimation.
    {
      //-- fill the ti
      for (size_t i=0; i < kViewNum; ++i)
      {
        size_t index = i*3;
        d2.translation_vector_[i] = Vec3(vec_solution[index], vec_solution[index+1], vec_solution[index+2]);
        // Change Ci to -Ri*Ci
        d2.camera_center_[i] = -d2.rotation_matrix_[i] * d2.translation_vector_[i];
      }

      //-- Now the Xi :
      for (size_t i=0; i < kPointsNum; ++i) {
        size_t index = 3*kViewNum;
        d2.point_3d_.col(i) = Vec3(vec_solution[index+i*3], vec_solution[index+i*3+1], vec_solution[index+i*3+2]);
      }
    }

    // Compute residuals L2 from estimated parameter values :
    Vec2 xk, xsum(0.0,0.0);
    for (size_t i = 0; i < d2.actual_camera_num_; ++i) {
      for(size_t k = 0; k < d.projected_points_[0].cols(); ++k)
      {
        xk = Project(d2.P(i), Vec3(d2.point_3d_.col(k)));
        xsum += Vec2(( xk - d2.projected_points_[i].col(k)).array().pow(2));
      }
    }
    double dResidual2D = (xsum.array().sqrt().sum());

    // Check that 2D re-projection and 3D point are near to GT.
    EXPECT_NEAR(0.0, dResidual2D, 1e-4);
  }

  d2.ExportToPLY("test_After_Infinity.ply");
}
开发者ID:lucasa,项目名称:3DReconstruction,代码行数:83,代码来源:tijs_and_xis_unittest.cpp


注:本文中的NViewDataSet::ExportToPLY方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。