当前位置: 首页>>代码示例>>C++>>正文


C++ NRMat::ncols方法代码示例

本文整理汇总了C++中NRMat::ncols方法的典型用法代码示例。如果您正苦于以下问题:C++ NRMat::ncols方法的具体用法?C++ NRMat::ncols怎么用?C++ NRMat::ncols使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NRMat的用法示例。


在下文中一共展示了NRMat::ncols方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: train

void Segmentor::train(const string& trainFile, const string& devFile, const string& testFile, const string& modelFile, const string& optionFile,
    const string& wordEmbFile, const string& charEmbFile, const string& bicharEmbFile) {
  if (optionFile != "")
    m_options.load(optionFile);

  m_options.showOptions();
  vector<Instance> trainInsts, devInsts, testInsts;
  m_pipe.readInstances(trainFile, trainInsts, m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);
  if (devFile != "")
    m_pipe.readInstances(devFile, devInsts, m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);
  if (testFile != "")
    m_pipe.readInstances(testFile, testInsts, m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);

  vector<vector<Instance> > otherInsts(m_options.testFiles.size());
  for (int idx = 0; idx < m_options.testFiles.size(); idx++) {
    m_pipe.readInstances(m_options.testFiles[idx], otherInsts[idx], m_classifier.MAX_SENTENCE_SIZE - 2, m_options.maxInstance);
  }

  createAlphabet(trainInsts);

  addTestWordAlpha(devInsts);
  addTestWordAlpha(testInsts);
    
  NRMat<dtype> wordEmb, allwordEmb;
  if (wordEmbFile != "") {  	
  	allWordAlphaEmb(wordEmbFile, allwordEmb);
  } else {
  	std::cout << "must not be here, allword must be pretrained." << std::endl;
  }
  wordEmb.resize(m_classifier.fe._wordAlphabet.size(), m_options.wordEmbSize);
  wordEmb.randu(1000);

  cout << "word emb dim is " << wordEmb.ncols() << std::endl;

  NRMat<dtype> charEmb;
  if (charEmbFile != "") {
  	readEmbeddings(m_classifier.fe._charAlphabet, charEmbFile, charEmb);
  } else {
  	charEmb.resize(m_classifier.fe._charAlphabet.size(), m_options.charEmbSize);
  	charEmb.randu(2000);
  }

  cout << "char emb dim is " << charEmb.ncols() << std::endl;

  NRMat<dtype> bicharEmb;
  if (bicharEmbFile != "") {
  	readEmbeddings(m_classifier.fe._bicharAlphabet, bicharEmbFile, bicharEmb);
  } else {
  	bicharEmb.resize(m_classifier.fe._bicharAlphabet.size(), m_options.bicharEmbSize);
  	bicharEmb.randu(2000);
  }

  cout << "bichar emb dim is " << bicharEmb.ncols() << std::endl;

  NRMat<dtype> actionEmb;
  actionEmb.resize(m_classifier.fe._actionAlphabet.size(), m_options.actionEmbSize);
  actionEmb.randu(3000);

  cout << "action emb dim is " << actionEmb.ncols() << std::endl;

  NRMat<dtype> lengthEmb;
  lengthEmb.resize(6, m_options.lengthEmbSize);
  lengthEmb.randu(3000);

  cout << "length emb dim is " << actionEmb.ncols() << std::endl;


  m_classifier.init(wordEmb, allwordEmb, lengthEmb, m_options.wordNgram, m_options.wordHiddenSize, m_options.wordRNNHiddenSize,
			charEmb, bicharEmb, m_options.charcontext, m_options.charHiddenSize, m_options.charRNNHiddenSize,
			actionEmb, m_options.actionNgram, m_options.actionHiddenSize, m_options.actionRNNHiddenSize,
			m_options.sepHiddenSize, m_options.appHiddenSize, m_options.delta);

  m_classifier.setDropValue(m_options.dropProb);

  m_classifier.setOOVFreq(m_options.wordCutOff);
  m_classifier.setOOVRatio(m_options.oovRatio);
  m_classifier.setWordFreq(m_word_stat);

  vector<vector<CAction> > trainInstGoldactions;
  getGoldActions(trainInsts, trainInstGoldactions);
  double bestFmeasure = 0;

  int inputSize = trainInsts.size();

  std::vector<int> indexes;
  for (int i = 0; i < inputSize; ++i)
    indexes.push_back(i);

  static Metric eval, metric_dev, metric_test;

  int maxIter = m_options.maxIter * (inputSize / m_options.batchSize + 1);
  int oneIterMaxRound = (inputSize + m_options.batchSize -1) / m_options.batchSize;
  std::cout << "maxIter = " << maxIter << std::endl;
  int devNum = devInsts.size(), testNum = testInsts.size();

  static vector<vector<string> > decodeInstResults;
  static vector<string> curDecodeInst;
  static bool bCurIterBetter;
  static vector<vector<string> > subInstances;
  static vector<vector<CAction> > subInstGoldActions;
//.........这里部分代码省略.........
开发者ID:LinguList,项目名称:NNTransitionSegmentor,代码行数:101,代码来源:LSTMNCSegmentor.cpp


注:本文中的NRMat::ncols方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。