本文整理汇总了C++中Molecule::getAtomAromaticity方法的典型用法代码示例。如果您正苦于以下问题:C++ Molecule::getAtomAromaticity方法的具体用法?C++ Molecule::getAtomAromaticity怎么用?C++ Molecule::getAtomAromaticity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Molecule
的用法示例。
在下文中一共展示了Molecule::getAtomAromaticity方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: generateInchiInput
void IndigoInchi::generateInchiInput (Molecule &mol, inchi_Input &input,
Array<inchi_Atom> &atoms, Array<inchi_Stereo0D> &stereo)
{
QS_DEF(Array<int>, mapping);
mapping.clear_resize(mol.vertexEnd());
mapping.fffill();
int index = 0;
for (int v = mol.vertexBegin(); v != mol.vertexEnd(); v = mol.vertexNext(v))
mapping[v] = index++;
atoms.clear_resize(index);
atoms.zerofill();
stereo.clear();
for (int v = mol.vertexBegin(); v != mol.vertexEnd(); v = mol.vertexNext(v))
{
inchi_Atom &atom = atoms[mapping[v]];
int atom_number = mol.getAtomNumber(v);
if (atom_number == ELEM_PSEUDO)
throw IndigoError("Molecule with pseudoatom (%s) cannot be converted into InChI", mol.getPseudoAtom(v));
if (atom_number == ELEM_RSITE)
throw IndigoError("Molecule with RGroups cannot be converted into InChI");
strncpy(atom.elname, Element::toString(atom_number), ATOM_EL_LEN);
Vec3f &c = mol.getAtomXyz(v);
atom.x = c.x;
atom.y = c.y;
atom.z = c.z;
// connectivity
const Vertex &vtx = mol.getVertex(v);
int nei_idx = 0;
for (int nei = vtx.neiBegin(); nei != vtx.neiEnd(); nei = vtx.neiNext(nei))
{
int v_nei = vtx.neiVertex(nei);
atom.neighbor[nei_idx] = mapping[v_nei];
int edge_idx = vtx.neiEdge(nei);
atom.bond_type[nei_idx] = getInchiBondType(mol.getBondOrder(edge_idx));
int bond_stereo = INCHI_BOND_STEREO_NONE;
if (mol.cis_trans.isIgnored(edge_idx))
bond_stereo = INCHI_BOND_STEREO_DOUBLE_EITHER;
else
{
int dir = mol.getBondDirection2(v, v_nei);
if (mol.getBondDirection2(v, v_nei) == BOND_EITHER)
bond_stereo = INCHI_BOND_STEREO_SINGLE_1EITHER;
else if (mol.getBondDirection2(v_nei, v) == BOND_EITHER)
bond_stereo = INCHI_BOND_STEREO_SINGLE_2EITHER;
}
atom.bond_stereo[nei_idx] = bond_stereo;
nei_idx++;
}
atom.num_bonds = vtx.degree();
// Other properties
atom.isotopic_mass = mol.getAtomIsotope(v);
atom.radical = mol.getAtomRadical(v);
atom.charge = mol.getAtomCharge(v);
// Hydrogens
int hcount = -1;
if (Molecule::shouldWriteHCount(mol, v) || mol.isExplicitValenceSet(v) || mol.isImplicitHSet(v))
{
if (mol.getAtomAromaticity(v) == ATOM_AROMATIC &&
atom_number == ELEM_C && atom.charge == 0 && atom.radical == 0)
{
// Do not set number of implicit hydrogens here as InChI throws an exception on
// the molecule B1=CB=c2cc3B=CC=c3cc12
;
}
else
// set -1 to tell InChI add implicit hydrogens automatically
hcount = mol.getImplicitH_NoThrow(v, -1);
}
atom.num_iso_H[0] = hcount;
}
// Process cis-trans bonds
for (int e = mol.edgeBegin(); e != mol.edgeEnd(); e = mol.edgeNext(e))
{
if (mol.cis_trans.getParity(e) == 0)
continue;
int subst[4];
mol.cis_trans.getSubstituents_All(e, subst);
const Edge &edge = mol.getEdge(e);
inchi_Stereo0D &st = stereo.push();
// Write it as
// #0 - #1 = #2 - #3
st.neighbor[0] = mapping[subst[0]];
st.neighbor[1] = mapping[edge.beg];
st.neighbor[2] = mapping[edge.end];
st.neighbor[3] = mapping[subst[2]];
if (mol.cis_trans.getParity(e) == MoleculeCisTrans::CIS)
st.parity = INCHI_PARITY_ODD;
//.........这里部分代码省略.........
示例2: _encodeAtom
//.........这里部分代码省略.........
int group = stereo.getGroup(idx);
if (group < 1 || group > CMF_MAX_STEREOGROUPS)
throw Error("stereogroup number %d out of range", group);
if (stereo_type == MoleculeStereocenters::ATOM_AND)
code = CMF_STEREO_AND_0 + group - 1;
else // stereo_type == MoleculeStereocenters::ATOM_OR
code = CMF_STEREO_OR_0 + group - 1;
}
if (!rigid)
// CMF_STEREO_*_0 -> CMF_STEREO_*_1
code += CMF_MAX_STEREOGROUPS * 2 + 1;
_encode(code);
}
if (mol.allene_stereo.isCenter(idx))
{
int left, right, parity, subst[4];
mol.allene_stereo.getByAtomIdx(idx, left, right, subst, parity);
if (subst[1] != -1 && mapping[subst[1]] != -1 && mapping[subst[1]] < mapping[subst[0]])
parity = 3 - parity;
if (subst[3] != -1 && mapping[subst[3]] != -1 && mapping[subst[3]] < mapping[subst[2]])
parity = 3 - parity;
if (parity == 1)
_encode(CMF_STEREO_ALLENE_0);
else
_encode(CMF_STEREO_ALLENE_1);
}
int impl_h = 0;
if (!mol.isPseudoAtom(idx) && !mol.isRSite(idx) && Molecule::shouldWriteHCount(mol, idx))
{
try
{
impl_h = mol.getImplicitH(idx);
if (impl_h < 0 || impl_h > CMF_MAX_IMPLICIT_H)
throw Error("implicit hydrogen count %d out of range", impl_h);
_encode(CMF_IMPLICIT_H + impl_h);
}
catch (Element::Error)
{
}
}
if (!mol.isRSite(idx) && !mol.isPseudoAtom(idx))
{
if (mol.getAtomAromaticity(idx) == ATOM_AROMATIC && (charge != 0 || (number != ELEM_C && number != ELEM_O)))
{
try
{
int valence = mol.getAtomValence(idx);
if (valence < 0 || valence > CMF_MAX_VALENCE)
{
_encode(CMF_VALENCE_EXT);
_output->writePackedUInt(valence);
}
else
_encode(CMF_VALENCE + valence);
}
catch (Element::Error)
{
}
}
}
int i;
for (i = 1; i <= mol.attachmentPointCount(); i++)
{
int j, aidx;
for (j = 0; (aidx = mol.getAttachmentPoint(i, j)) != -1; j++)
if (aidx == idx)
{
_encode(CMF_ATTACHPT);
_encode(i);
}
}
if (atom_flags != 0)
{
int i, flags = atom_flags[idx];
for (i = 0; i < CMF_NUM_OF_ATOM_FLAGS; i++)
if (flags & (1 << i))
_encode(CMF_ATOM_FLAGS + i);
}
if (save_highlighting)
if (mol.isAtomHighlighted(idx))
_encode(CMF_HIGHLIGHTED);
}
示例3: _calculateHydrogensAndDegree
void MoleculeAutomorphismSearch::_calculateHydrogensAndDegree (Molecule &mol)
{
_hcount.clear_resize(mol.vertexEnd());
_degree.clear_resize(mol.vertexEnd());
_degree.zerofill();
for (int i = mol.vertexBegin(); i != mol.vertexEnd(); i = mol.vertexNext(i))
{
if (mol.isRSite(i) || mol.isPseudoAtom(i) || mol.isTemplateAtom(i))
_hcount[i] = 0;
else
_hcount[i] = mol.getImplicitH_NoThrow(i, -1);
if (_hcount[i] < 0)
{
if (mol.getAtomAromaticity(i) == ATOM_AROMATIC)
{
if (mol.getAtomNumber(i) == ELEM_C && mol.getAtomCharge(i) == 0)
{
if (mol.getVertex(i).degree() == 3)
_hcount[i] = 0;
else if (mol.getVertex(i).degree() == 2)
_hcount[i] = 1;
}
else if (mol.getAtomNumber(i) == ELEM_O && mol.getAtomCharge(i) == 0)
_hcount[i] = 0;
else
{
if (!allow_undefined)
// This code will throw an error with a good explanation
_hcount[i] = mol.getImplicitH(i);
else
// Make number of hydrogens unique in order to make such atoms unique
_hcount[i] = 101 + i;
}
}
else
{
// Number of atoms are underfined, but all the properties like
// connectivity, charge, and etc., and this mean that such
// atoms are comparable even.
// For example, this cis-trans bond is invalid even if the number
// of hydrogens are undefined: CC=C(N(C)=O)N(C)=O
_hcount[i] = 100; // Any big number.
// Later this number can be increased including neighbour hydrogens,
// and this is correct, because nitrogens in these molecules are different:
// C[N](C)=O and [H][N]([H])(C)(C)=O
}
}
const Vertex &vertex = mol.getVertex(i);
_degree[i] = 0;
if (ignored_vertices != 0 && ignored_vertices[i])
continue;
for (int j = vertex.neiBegin(); j != vertex.neiEnd(); j = vertex.neiNext(j))
{
if (mol.getAtomNumber(vertex.neiVertex(j)) == ELEM_H &&
mol.getAtomIsotope(vertex.neiVertex(j)) == 0)
_hcount[i]++;
if (ignored_vertices == 0 || ignored_vertices[vertex.neiVertex(j)] == 0)
_degree[i]++;
}
}
// Compute independent components if the canonical ordering is not required
_independent_component_index.clear_resize(mol.vertexEnd());
if (!find_canonical_ordering)
{
// We can mark different connected components as independent
GraphDecomposer decomposer(mol);
decomposer.decompose();
_independent_component_index.copy(decomposer.getDecomposition());
}
else
_independent_component_index.fffill();
}