本文整理汇总了C++中ModuleGenerator::masm方法的典型用法代码示例。如果您正苦于以下问题:C++ ModuleGenerator::masm方法的具体用法?C++ ModuleGenerator::masm怎么用?C++ ModuleGenerator::masm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ModuleGenerator
的用法示例。
在下文中一共展示了ModuleGenerator::masm方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
bool
wasm::GenerateStubs(ModuleGenerator& mg, bool usesHeap)
{
for (unsigned i = 0; i < mg.numExports(); i++) {
if (!GenerateEntry(mg, i, usesHeap))
return false;
}
Label onThrow;
for (size_t i = 0; i < mg.numImports(); i++) {
ProfilingOffsets interp;
if (!GenerateInterpExitStub(mg, i, &onThrow, &interp))
return false;
ProfilingOffsets jit;
if (!GenerateJitExitStub(mg, i, usesHeap, &onThrow, &jit))
return false;
if (!mg.defineImport(i, interp, jit))
return false;
}
if (mg.masm().asmStackOverflowLabel()->used()) {
if (!GenerateStackOverflowStub(mg, &onThrow))
return false;
}
if (mg.masm().asmSyncInterruptLabel()->used()) {
if (!GenerateSyncInterruptStub(mg, &onThrow))
return false;
}
if (mg.masm().asmOnConversionErrorLabel()->used()) {
if (!GenerateConversionErrorStub(mg, &onThrow))
return false;
}
// Generate unconditionally: the out-of-bounds exit may be used later even
// if signal handling isn't used for out-of-bounds at the moment.
if (!GenerateOutOfBoundsStub(mg, &onThrow))
return false;
// Generate unconditionally: the async interrupt may be taken at any time.
if (!GenerateAsyncInterruptStub(mg, &onThrow))
return false;
if (onThrow.used()) {
if (!GenerateThrowStub(mg, &onThrow))
return false;
}
return true;
}
示例2: Address
// Generate a stub that is called immediately after the prologue when there is a
// stack overflow. This stub calls a C++ function to report the error and then
// jumps to the throw stub to pop the activation.
static bool
GenerateStackOverflowStub(ModuleGenerator& mg, Label* throwLabel)
{
MacroAssembler& masm = mg.masm();
masm.haltingAlign(CodeAlignment);
Offsets offsets;
offsets.begin = masm.currentOffset();
masm.bind(masm.asmStackOverflowLabel());
// If we reach here via the non-profiling prologue, WasmActivation::fp has
// not been updated. To enable stack unwinding from C++, store to it now. If
// we reached here via the profiling prologue, we'll just store the same
// value again. Do not update AsmJSFrame::callerFP as it is not necessary in
// the non-profiling case (there is no return path from this point) and, in
// the profiling case, it is already correct.
Register activation = ABIArgGenerator::NonArgReturnReg0;
masm.loadWasmActivation(activation);
masm.storePtr(masm.getStackPointer(), Address(activation, WasmActivation::offsetOfFP()));
// Prepare the stack for calling C++.
if (uint32_t d = StackDecrementForCall(ABIStackAlignment, sizeof(AsmJSFrame), ShadowStackSpace))
masm.subFromStackPtr(Imm32(d));
// No need to restore the stack; the throw stub pops everything.
masm.assertStackAlignment(ABIStackAlignment);
masm.call(SymbolicAddress::ReportOverRecursed);
masm.jump(throwLabel);
if (masm.oom())
return false;
offsets.end = masm.currentOffset();
return mg.defineInlineStub(offsets);
}
示例3: StackDecrementForCall
// Generate a stub that is called from the synchronous, inline interrupt checks
// when the interrupt flag is set. This stub calls the C++ function to handle
// the interrupt which returns whether execution has been interrupted.
static bool
GenerateSyncInterruptStub(ModuleGenerator& mg, Label* throwLabel)
{
MacroAssembler& masm = mg.masm();
masm.setFramePushed(0);
unsigned framePushed = StackDecrementForCall(masm, ABIStackAlignment, ShadowStackSpace);
ProfilingOffsets offsets;
GenerateExitPrologue(masm, framePushed, ExitReason::Native, &offsets,
masm.asmSyncInterruptLabel());
AssertStackAlignment(masm, ABIStackAlignment);
masm.call(SymbolicAddress::HandleExecutionInterrupt);
masm.branchIfFalseBool(ReturnReg, throwLabel);
GenerateExitEpilogue(masm, framePushed, ExitReason::Native, &offsets);
if (masm.oom())
return false;
offsets.end = masm.currentOffset();
return mg.defineSyncInterruptStub(offsets);
}
示例4: src
// Generate a stub that enters wasm from a C++ caller via the native ABI.
// The signature of the entry point is Module::CodePtr. The exported wasm
// function has an ABI derived from its specific signature, so this function
// must map from the ABI of CodePtr to the export's signature's ABI.
static bool
GenerateEntry(ModuleGenerator& mg, unsigned exportIndex, bool usesHeap)
{
MacroAssembler& masm = mg.masm();
const Sig& sig = mg.exportSig(exportIndex);
masm.haltingAlign(CodeAlignment);
Offsets offsets;
offsets.begin = masm.currentOffset();
// Save the return address if it wasn't already saved by the call insn.
#if defined(JS_CODEGEN_ARM)
masm.push(lr);
#elif defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
masm.push(ra);
#elif defined(JS_CODEGEN_X86)
static const unsigned EntryFrameSize = sizeof(void*);
#endif
// Save all caller non-volatile registers before we clobber them here and in
// the asm.js callee (which does not preserve non-volatile registers).
masm.setFramePushed(0);
masm.PushRegsInMask(NonVolatileRegs);
MOZ_ASSERT(masm.framePushed() == FramePushedAfterSave);
// ARM and MIPS/MIPS64 have a globally-pinned GlobalReg (x64 uses RIP-relative
// addressing, x86 uses immediates in effective addresses). For the
// AsmJSGlobalRegBias addition, see Assembler-(mips,arm).h.
#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
masm.movePtr(IntArgReg1, GlobalReg);
masm.addPtr(Imm32(AsmJSGlobalRegBias), GlobalReg);
#endif
// ARM, MIPS/MIPS64 and x64 have a globally-pinned HeapReg (x86 uses immediates in
// effective addresses). Loading the heap register depends on the global
// register already having been loaded.
if (usesHeap)
masm.loadAsmJSHeapRegisterFromGlobalData();
// Put the 'argv' argument into a non-argument/return register so that we
// can use 'argv' while we fill in the arguments for the asm.js callee.
// Also, save 'argv' on the stack so that we can recover it after the call.
// Use a second non-argument/return register as temporary scratch.
Register argv = ABIArgGenerator::NonArgReturnReg0;
Register scratch = ABIArgGenerator::NonArgReturnReg1;
#if defined(JS_CODEGEN_X86)
masm.loadPtr(Address(masm.getStackPointer(), EntryFrameSize + masm.framePushed()), argv);
#else
masm.movePtr(IntArgReg0, argv);
#endif
masm.Push(argv);
// Save the stack pointer to the saved non-volatile registers. We will use
// this on two paths: normal return and exceptional return. Since
// loadWasmActivation uses GlobalReg, we must do this after loading
// GlobalReg.
MOZ_ASSERT(masm.framePushed() == FramePushedForEntrySP);
masm.loadWasmActivation(scratch);
masm.storeStackPtr(Address(scratch, WasmActivation::offsetOfEntrySP()));
// Dynamically align the stack since ABIStackAlignment is not necessarily
// AsmJSStackAlignment. We'll use entrySP to recover the original stack
// pointer on return.
masm.andToStackPtr(Imm32(~(AsmJSStackAlignment - 1)));
// Bump the stack for the call.
masm.reserveStack(AlignBytes(StackArgBytes(sig.args()), AsmJSStackAlignment));
// Copy parameters out of argv and into the registers/stack-slots specified by
// the system ABI.
for (ABIArgValTypeIter iter(sig.args()); !iter.done(); iter++) {
unsigned argOffset = iter.index() * Module::SizeOfEntryArg;
Address src(argv, argOffset);
MIRType type = iter.mirType();
switch (iter->kind()) {
case ABIArg::GPR:
masm.load32(src, iter->gpr());
break;
#ifdef JS_CODEGEN_REGISTER_PAIR
case ABIArg::GPR_PAIR:
MOZ_CRASH("wasm uses hardfp for function calls.");
break;
#endif
case ABIArg::FPU: {
static_assert(Module::SizeOfEntryArg >= jit::Simd128DataSize,
"EntryArg must be big enough to store SIMD values");
switch (type) {
case MIRType_Int32x4:
case MIRType_Bool32x4:
masm.loadUnalignedInt32x4(src, iter->fpu());
break;
case MIRType_Float32x4:
masm.loadUnalignedFloat32x4(src, iter->fpu());
break;
case MIRType_Double:
//.........这里部分代码省略.........
示例5: defined
// The async interrupt-callback exit is called from arbitrarily-interrupted asm.js
// code. That means we must first save *all* registers and restore *all*
// registers (except the stack pointer) when we resume. The address to resume to
// (assuming that js::HandleExecutionInterrupt doesn't indicate that the
// execution should be aborted) is stored in WasmActivation::resumePC_.
// Unfortunately, loading this requires a scratch register which we don't have
// after restoring all registers. To hack around this, push the resumePC on the
// stack so that it can be popped directly into PC.
static bool
GenerateAsyncInterruptStub(ModuleGenerator& mg, Label* throwLabel)
{
MacroAssembler& masm = mg.masm();
masm.haltingAlign(CodeAlignment);
Offsets offsets;
offsets.begin = masm.currentOffset();
#if defined(JS_CODEGEN_X86) || defined(JS_CODEGEN_X64)
// Be very careful here not to perturb the machine state before saving it
// to the stack. In particular, add/sub instructions may set conditions in
// the flags register.
masm.push(Imm32(0)); // space for resumePC
masm.pushFlags(); // after this we are safe to use sub
masm.setFramePushed(0); // set to zero so we can use masm.framePushed() below
masm.PushRegsInMask(AllRegsExceptSP); // save all GP/FP registers (except SP)
Register scratch = ABIArgGenerator::NonArgReturnReg0;
// Store resumePC into the reserved space.
masm.loadWasmActivation(scratch);
masm.loadPtr(Address(scratch, WasmActivation::offsetOfResumePC()), scratch);
masm.storePtr(scratch, Address(masm.getStackPointer(), masm.framePushed() + sizeof(void*)));
// We know that StackPointer is word-aligned, but not necessarily
// stack-aligned, so we need to align it dynamically.
masm.moveStackPtrTo(ABIArgGenerator::NonVolatileReg);
masm.andToStackPtr(Imm32(~(ABIStackAlignment - 1)));
if (ShadowStackSpace)
masm.subFromStackPtr(Imm32(ShadowStackSpace));
masm.assertStackAlignment(ABIStackAlignment);
masm.call(SymbolicAddress::HandleExecutionInterrupt);
masm.branchIfFalseBool(ReturnReg, throwLabel);
// Restore the StackPointer to its position before the call.
masm.moveToStackPtr(ABIArgGenerator::NonVolatileReg);
// Restore the machine state to before the interrupt.
masm.PopRegsInMask(AllRegsExceptSP); // restore all GP/FP registers (except SP)
masm.popFlags(); // after this, nothing that sets conditions
masm.ret(); // pop resumePC into PC
#elif defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
// Reserve space to store resumePC.
masm.subFromStackPtr(Imm32(sizeof(intptr_t)));
// set to zero so we can use masm.framePushed() below.
masm.setFramePushed(0);
// When this platform supports SIMD extensions, we'll need to push high lanes
// of SIMD registers as well.
JS_STATIC_ASSERT(!SupportsSimd);
// save all registers,except sp. After this stack is alligned.
masm.PushRegsInMask(AllRegsExceptSP);
// Save the stack pointer in a non-volatile register.
masm.moveStackPtrTo(s0);
// Align the stack.
masm.ma_and(StackPointer, StackPointer, Imm32(~(ABIStackAlignment - 1)));
// Store resumePC into the reserved space.
masm.loadWasmActivation(IntArgReg0);
masm.loadPtr(Address(IntArgReg0, WasmActivation::offsetOfResumePC()), IntArgReg1);
masm.storePtr(IntArgReg1, Address(s0, masm.framePushed()));
// MIPS ABI requires rewserving stack for registes $a0 to $a3.
masm.subFromStackPtr(Imm32(4 * sizeof(intptr_t)));
masm.assertStackAlignment(ABIStackAlignment);
masm.call(SymbolicAddress::HandleExecutionInterrupt);
masm.addToStackPtr(Imm32(4 * sizeof(intptr_t)));
masm.branchIfFalseBool(ReturnReg, throwLabel);
// This will restore stack to the address before the call.
masm.moveToStackPtr(s0);
masm.PopRegsInMask(AllRegsExceptSP);
// Pop resumePC into PC. Clobber HeapReg to make the jump and restore it
// during jump delay slot.
masm.pop(HeapReg);
masm.as_jr(HeapReg);
masm.loadAsmJSHeapRegisterFromGlobalData();
#elif defined(JS_CODEGEN_ARM)
masm.setFramePushed(0); // set to zero so we can use masm.framePushed() below
// Save all GPR, except the stack pointer.
masm.PushRegsInMask(LiveRegisterSet(
GeneralRegisterSet(Registers::AllMask & ~(1<<Registers::sp)),
FloatRegisterSet(uint32_t(0))));
//.........这里部分代码省略.........
示例6: i
// Generate a stub that is called via the internal ABI derived from the
// signature of the import and calls into a compatible JIT function,
// having boxed all the ABI arguments into the JIT stack frame layout.
static bool
GenerateJitExitStub(ModuleGenerator& mg, unsigned importIndex, bool usesHeap,
Label* throwLabel, ProfilingOffsets* offsets)
{
MacroAssembler& masm = mg.masm();
const Sig& sig = *mg.import(importIndex).sig;
masm.setFramePushed(0);
// JIT calls use the following stack layout (sp grows to the left):
// | retaddr | descriptor | callee | argc | this | arg1..N |
// After the JIT frame, the global register (if present) is saved since the
// JIT's ABI does not preserve non-volatile regs. Also, unlike most ABIs,
// the JIT ABI requires that sp be JitStackAlignment-aligned *after* pushing
// the return address.
static_assert(AsmJSStackAlignment >= JitStackAlignment, "subsumes");
unsigned sizeOfRetAddr = sizeof(void*);
unsigned jitFrameBytes = 3 * sizeof(void*) + (1 + sig.args().length()) * sizeof(Value);
unsigned totalJitFrameBytes = sizeOfRetAddr + jitFrameBytes + MaybeSavedGlobalReg;
unsigned jitFramePushed = StackDecrementForCall(masm, JitStackAlignment, totalJitFrameBytes) -
sizeOfRetAddr;
GenerateExitPrologue(masm, jitFramePushed, ExitReason::ImportJit, offsets);
// 1. Descriptor
size_t argOffset = 0;
uint32_t descriptor = MakeFrameDescriptor(jitFramePushed, JitFrame_Entry);
masm.storePtr(ImmWord(uintptr_t(descriptor)), Address(masm.getStackPointer(), argOffset));
argOffset += sizeof(size_t);
// 2. Callee
Register callee = ABIArgGenerator::NonArgReturnReg0; // live until call
Register scratch = ABIArgGenerator::NonArgReturnReg1; // repeatedly clobbered
// 2.1. Get ExitDatum
unsigned globalDataOffset = mg.import(importIndex).globalDataOffset;
#if defined(JS_CODEGEN_X64)
masm.append(AsmJSGlobalAccess(masm.leaRipRelative(callee), globalDataOffset));
#elif defined(JS_CODEGEN_X86)
masm.append(AsmJSGlobalAccess(masm.movlWithPatch(Imm32(0), callee), globalDataOffset));
#elif defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64) || \
defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
masm.computeEffectiveAddress(Address(GlobalReg, globalDataOffset - AsmJSGlobalRegBias), callee);
#endif
// 2.2. Get callee
masm.loadPtr(Address(callee, Module::OffsetOfImportExitFun), callee);
// 2.3. Save callee
masm.storePtr(callee, Address(masm.getStackPointer(), argOffset));
argOffset += sizeof(size_t);
// 2.4. Load callee executable entry point
masm.loadPtr(Address(callee, JSFunction::offsetOfNativeOrScript()), callee);
masm.loadBaselineOrIonNoArgCheck(callee, callee, nullptr);
// 3. Argc
unsigned argc = sig.args().length();
masm.storePtr(ImmWord(uintptr_t(argc)), Address(masm.getStackPointer(), argOffset));
argOffset += sizeof(size_t);
// 4. |this| value
masm.storeValue(UndefinedValue(), Address(masm.getStackPointer(), argOffset));
argOffset += sizeof(Value);
// 5. Fill the arguments
unsigned offsetToCallerStackArgs = jitFramePushed + sizeof(AsmJSFrame);
FillArgumentArray(masm, sig.args(), argOffset, offsetToCallerStackArgs, scratch);
argOffset += sig.args().length() * sizeof(Value);
MOZ_ASSERT(argOffset == jitFrameBytes);
// 6. Jit code will clobber all registers, even non-volatiles. GlobalReg and
// HeapReg are removed from the general register set for asm.js code, so
// these will not have been saved by the caller like all other registers,
// so they must be explicitly preserved. Only save GlobalReg since
// HeapReg can be reloaded (from global data) after the call.
#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
static_assert(MaybeSavedGlobalReg == sizeof(void*), "stack frame accounting");
masm.storePtr(GlobalReg, Address(masm.getStackPointer(), jitFrameBytes));
#endif
{
// Enable Activation.
//
// This sequence requires four registers, and needs to preserve the 'callee'
// register, so there are five live registers.
MOZ_ASSERT(callee == AsmJSIonExitRegCallee);
Register reg0 = AsmJSIonExitRegE0;
Register reg1 = AsmJSIonExitRegE1;
Register reg2 = AsmJSIonExitRegE2;
Register reg3 = AsmJSIonExitRegE3;
// The following is inlined:
// JSContext* cx = activation->cx();
// Activation* act = cx->runtime()->activation();
// act.active_ = true;
// act.prevJitTop_ = cx->runtime()->jitTop;
//.........这里部分代码省略.........