当前位置: 首页>>代码示例>>C++>>正文


C++ MemoryArena::Reset方法代码示例

本文整理汇总了C++中MemoryArena::Reset方法的典型用法代码示例。如果您正苦于以下问题:C++ MemoryArena::Reset方法的具体用法?C++ MemoryArena::Reset怎么用?C++ MemoryArena::Reset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MemoryArena的用法示例。


在下文中一共展示了MemoryArena::Reset方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: L

// MLT Method Definitions
Spectrum MLTIntegrator::L(const Scene &scene, MemoryArena &arena,
                          MLTSampler &sampler, int depth, Point2f *samplePos) {
    sampler.SetStream(3, 0);
    // Determine the number of available strategies and pick a specific one
    int s, t, nStrategies;
    if (depth == 0) {
        nStrategies = 1;
        s = 0;
        t = 2;
    } else {
        nStrategies = depth + 2;
        s = std::min((int)(sampler.Get1D() * nStrategies), nStrategies - 1);
        t = nStrategies - s;
    }

    // Generate a camera subpath with exactly _t_ vertices
    Vertex *cameraSubpath = (Vertex *)arena.Alloc<Vertex>(t);
    Bounds2i sampleBounds = camera->film->GetSampleBounds();
    Vector2i diag = sampleBounds.Diagonal();
    *samplePos = Point2f(sampleBounds.pMin.x + diag.x * sampler.Get1D(),
                         sampleBounds.pMin.y + diag.y * sampler.Get1D());
    if (GenerateCameraSubpath(scene, sampler, arena, t, *camera, *samplePos,
                              cameraSubpath) != t)
        return Spectrum(0.f);

    // Generate a light subpath with exactly _s_ vertices
    sampler.SetStream(3, 1);
    Vertex *lightSubpath = (Vertex *)arena.Alloc<Vertex>(s);
    if (GenerateLightSubpath(scene, sampler, arena, s, cameraSubpath[0].time(),
                             *lightDistr, lightSubpath) != s)
        return Spectrum(0.f);

    // Execute connection strategy and return the radiance estimate
    sampler.SetStream(3, 2);
    Spectrum L = ConnectBDPT(scene, lightSubpath, cameraSubpath, s, t,
                             *lightDistr, *camera, sampler, samplePos);
    arena.Reset();
    return L * nStrategies;
}
开发者ID:LunaTheFinal,项目名称:pbrt-v3,代码行数:40,代码来源:mlt.cpp

示例2: Render

void MLTIntegrator::Render(const Scene &scene) {
    ProfilePhase p(Prof::IntegratorRender);
    std::unique_ptr<Distribution1D> lightDistr =
        ComputeLightPowerDistribution(scene);
    // Generate bootstrap samples and compute normalization constant $b$
    int nBootstrapSamples = nBootstrap * (maxDepth + 1);
    std::vector<Float> bootstrapWeights(nBootstrapSamples, 0);
    if (scene.lights.size() > 0) {
        ProgressReporter progress(nBootstrap / 256,
                                  "Generating bootstrap paths");
        std::vector<MemoryArena> bootstrapThreadArenas(MaxThreadIndex());
        int chunkSize = Clamp(nBootstrap / 128, 1, 8192);
        ParallelFor([&](int i) {
            // Generate _i_th bootstrap sample
            MemoryArena &arena = bootstrapThreadArenas[threadIndex];
            for (int depth = 0; depth <= maxDepth; ++depth) {
                int rngIndex = i * (maxDepth + 1) + depth;
                MLTSampler sampler(mutationsPerPixel, rngIndex, sigma,
                                   largeStepProbability, nSampleStreams);
                Point2f pRaster;
                bootstrapWeights[rngIndex] =
                    L(scene, arena, lightDistr, sampler, depth, &pRaster).y();
                arena.Reset();
            }
            if ((i + 1 % 256) == 0) progress.Update();
        }, nBootstrap, chunkSize);
        progress.Done();
    }
    Distribution1D bootstrap(&bootstrapWeights[0], nBootstrapSamples);
    Float b = bootstrap.funcInt * (maxDepth + 1);

    // Run _nChains_ Markov chains in parallel
    Film &film = *camera->film;
    int64_t nTotalMutations =
        (int64_t)mutationsPerPixel * (int64_t)film.GetSampleBounds().Area();
    if (scene.lights.size() > 0) {
        StatTimer timer(&renderingTime);
        const int progressFrequency = 32768;
        ProgressReporter progress(nTotalMutations / progressFrequency,
                                  "Rendering");
        ParallelFor([&](int i) {
            int64_t nChainMutations =
                std::min((i + 1) * nTotalMutations / nChains, nTotalMutations) -
                i * nTotalMutations / nChains;
            // Follow {i}th Markov chain for _nChainMutations_
            MemoryArena arena;

            // Select initial state from the set of bootstrap samples
            RNG rng(i);
            int bootstrapIndex = bootstrap.SampleDiscrete(rng.UniformFloat());
            int depth = bootstrapIndex % (maxDepth + 1);

            // Initialize local variables for selected state
            MLTSampler sampler(mutationsPerPixel, bootstrapIndex, sigma,
                               largeStepProbability, nSampleStreams);
            Point2f pCurrent;
            Spectrum LCurrent =
                L(scene, arena, lightDistr, sampler, depth, &pCurrent);

            // Run the Markov chain for _nChainMutations_ steps
            for (int64_t j = 0; j < nChainMutations; ++j) {
                sampler.StartIteration();
                Point2f pProposed;
                Spectrum LProposed =
                    L(scene, arena, lightDistr, sampler, depth, &pProposed);
                // Compute acceptance probability for proposed sample
                Float accept = std::min((Float)1, LProposed.y() / LCurrent.y());

                // Splat both current and proposed samples to _film_
                if (accept > 0)
                    film.AddSplat(pProposed,
                                  LProposed * accept / LProposed.y());
                film.AddSplat(pCurrent, LCurrent * (1 - accept) / LCurrent.y());

                // Accept or reject the proposal
                if (rng.UniformFloat() < accept) {
                    pCurrent = pProposed;
                    LCurrent = LProposed;
                    sampler.Accept();
                    ++acceptedMutations;
                } else
                    sampler.Reject();
                ++totalMutations;
                if ((i * nTotalMutations / nChains + j) % progressFrequency ==
                    0)
                    progress.Update();
                arena.Reset();
            }
        }, nChains);
        progress.Done();
    }

    // Store final image computed with MLT
    camera->film->WriteImage(b / mutationsPerPixel);
}
开发者ID:NickYang,项目名称:pbrt-v3,代码行数:95,代码来源:mlt.cpp

示例3: Render


//.........这里部分代码省略.........
            }
        }
    }

    // Render and write the output image to disk
    if (scene.lights.size() > 0) {
        ParallelFor2D([&](const Point2i tile) {
            // Render a single tile using BDPT
            MemoryArena arena;
            int seed = tile.y * nXTiles + tile.x;
            std::unique_ptr<Sampler> tileSampler = sampler->Clone(seed);
            int x0 = sampleBounds.pMin.x + tile.x * tileSize;
            int x1 = std::min(x0 + tileSize, sampleBounds.pMax.x);
            int y0 = sampleBounds.pMin.y + tile.y * tileSize;
            int y1 = std::min(y0 + tileSize, sampleBounds.pMax.y);
            Bounds2i tileBounds(Point2i(x0, y0), Point2i(x1, y1));
            std::unique_ptr<FilmTile> filmTile =
                camera->film->GetFilmTile(tileBounds);
            for (Point2i pPixel : tileBounds) {
                tileSampler->StartPixel(pPixel);
                if (!InsideExclusive(pPixel, pixelBounds))
                    continue;
                do {
                    // Generate a single sample using BDPT
                    Point2f pFilm = (Point2f)pPixel + tileSampler->Get2D();

                    // Trace the camera subpath
                    Vertex *cameraVertices = arena.Alloc<Vertex>(maxDepth + 2);
                    Vertex *lightVertices = arena.Alloc<Vertex>(maxDepth + 1);
                    int nCamera = GenerateCameraSubpath(
                        scene, *tileSampler, arena, maxDepth + 2, *camera,
                        pFilm, cameraVertices);
                    // Get a distribution for sampling the light at the
                    // start of the light subpath. Because the light path
                    // follows multiple bounces, basing the sampling
                    // distribution on any of the vertices of the camera
                    // path is unlikely to be a good strategy. We use the
                    // PowerLightDistribution by default here, which
                    // doesn't use the point passed to it.
                    const Distribution1D *lightDistr =
                        lightDistribution->Lookup(cameraVertices[0].p());
                    // Now trace the light subpath
                    int nLight = GenerateLightSubpath(
                        scene, *tileSampler, arena, maxDepth + 1,
                        cameraVertices[0].time(), *lightDistr, lightToIndex,
                        lightVertices);

                    // Execute all BDPT connection strategies
                    Spectrum L(0.f);
                    for (int t = 1; t <= nCamera; ++t) {
                        for (int s = 0; s <= nLight; ++s) {
                            int depth = t + s - 2;
                            if ((s == 1 && t == 1) || depth < 0 ||
                                depth > maxDepth)
                                continue;
                            // Execute the $(s, t)$ connection strategy and
                            // update _L_
                            Point2f pFilmNew = pFilm;
                            Float misWeight = 0.f;
                            Spectrum Lpath = ConnectBDPT(
                                scene, lightVertices, cameraVertices, s, t,
                                *lightDistr, lightToIndex, *camera, *tileSampler,
                                &pFilmNew, &misWeight);
                            VLOG(2) << "Connect bdpt s: " << s <<", t: " << t <<
                                ", Lpath: " << Lpath << ", misWeight: " << misWeight;
                            if (visualizeStrategies || visualizeWeights) {
                                Spectrum value;
                                if (visualizeStrategies)
                                    value =
                                        misWeight == 0 ? 0 : Lpath / misWeight;
                                if (visualizeWeights) value = Lpath;
                                weightFilms[BufferIndex(s, t)]->AddSplat(
                                    pFilmNew, value);
                            }
                            if (t != 1)
                                L += Lpath;
                            else
                                film->AddSplat(pFilmNew, Lpath);
                        }
                    }
                    VLOG(2) << "Add film sample pFilm: " << pFilm << ", L: " << L <<
                        ", (y: " << L.y() << ")";
                    filmTile->AddSample(pFilm, L);
                    arena.Reset();
                } while (tileSampler->StartNextSample());
            }
            film->MergeFilmTile(std::move(filmTile));
            reporter.Update();
        }, Point2i(nXTiles, nYTiles));
        reporter.Done();
    }
    film->WriteImage(1.0f / sampler->samplesPerPixel);

    // Write buffers for debug visualization
    if (visualizeStrategies || visualizeWeights) {
        const Float invSampleCount = 1.0f / sampler->samplesPerPixel;
        for (size_t i = 0; i < weightFilms.size(); ++i)
            if (weightFilms[i]) weightFilms[i]->WriteImage(invSampleCount);
    }
}
开发者ID:wjakob,项目名称:pbrt-v3,代码行数:101,代码来源:bdpt.cpp

示例4: Render

// SamplerIntegrator Method Definitions
void SamplerIntegrator::Render(const Scene &scene) {
    ProfilePhase p(Prof::IntegratorRender);
    Preprocess(scene, *sampler);
    // Render image tiles in parallel

    // Compute number of tiles, _nTiles_, to use for parallel rendering
    Bounds2i sampleBounds = camera->film->GetSampleBounds();
    Vector2i sampleExtent = sampleBounds.Diagonal();
    const int tileSize = 16;
    Point2i nTiles((sampleExtent.x + tileSize - 1) / tileSize,
                   (sampleExtent.y + tileSize - 1) / tileSize);
    ProgressReporter reporter(nTiles.x * nTiles.y, "Rendering");
    {
        StatTimer timer(&renderingTime);
        ParallelFor2D([&](Point2i tile) {
            // Render section of image corresponding to _tile_

            // Allocate _MemoryArena_ for tile
            MemoryArena arena;

            // Get sampler instance for tile
            int seed = tile.y * nTiles.x + tile.x;
            std::unique_ptr<Sampler> tileSampler = sampler->Clone(seed);

            // Compute sample bounds for tile
            int x0 = sampleBounds.pMin.x + tile.x * tileSize;
            int x1 = std::min(x0 + tileSize, sampleBounds.pMax.x);
            int y0 = sampleBounds.pMin.y + tile.y * tileSize;
            int y1 = std::min(y0 + tileSize, sampleBounds.pMax.y);
            Bounds2i tileBounds(Point2i(x0, y0), Point2i(x1, y1));

            // Get _FilmTile_ for tile
            std::unique_ptr<FilmTile> filmTile =
                camera->film->GetFilmTile(tileBounds);

            // Loop over pixels in tile to render them
            for (Point2i pixel : tileBounds) {
                {
                    ProfilePhase pp(Prof::StartPixel);
                    tileSampler->StartPixel(pixel);
                }
                do {
                    // Initialize _CameraSample_ for current sample
                    CameraSample cameraSample =
                        tileSampler->GetCameraSample(pixel);

                    // Generate camera ray for current sample
                    RayDifferential ray;
                    Float rayWeight =
                        camera->GenerateRayDifferential(cameraSample, &ray);
                    ray.ScaleDifferentials(
                        1 / std::sqrt((Float)tileSampler->samplesPerPixel));
                    ++nCameraRays;

                    // Evaluate radiance along camera ray
                    Spectrum L(0.f);
                    if (rayWeight > 0) L = Li(ray, scene, *tileSampler, arena);

                    // Issue warning if unexpected radiance value returned
                    if (L.HasNaNs()) {
                        Error(
                            "Not-a-number radiance value returned "
                            "for image sample.  Setting to black.");
                        L = Spectrum(0.f);
                    } else if (L.y() < -1e-5) {
                        Error(
                            "Negative luminance value, %f, returned "
                            "for image sample.  Setting to black.",
                            L.y());
                        L = Spectrum(0.f);
                    } else if (std::isinf(L.y())) {
                        Error(
                            "Infinite luminance value returned "
                            "for image sample.  Setting to black.");
                        L = Spectrum(0.f);
                    }

                    // Add camera ray's contribution to image
                    filmTile->AddSample(cameraSample.pFilm, L, rayWeight);

                    // Free _MemoryArena_ memory from computing image sample
                    // value
                    arena.Reset();
                } while (tileSampler->StartNextSample());
            }

            // Merge image tile into _Film_
            camera->film->MergeFilmTile(std::move(filmTile));
            reporter.Update();
        }, nTiles);
        reporter.Done();
    }

    // Save final image after rendering
    camera->film->WriteImage();
}
开发者ID:DINKIN,项目名称:pbrt-v3,代码行数:97,代码来源:integrator.cpp

示例5: Render


//.........这里部分代码省略.........
    if (visualizeStrategies || visualizeWeights) {
        for (int depth = 0; depth <= maxDepth; ++depth) {
            for (int s = 0; s <= depth + 2; ++s) {
                int t = depth + 2 - s;
                if (t == 0 || (s == 1 && t == 1)) continue;

                std::string filename =
                    StringPrintf("bdpt_d%02i_s%02i_t%02i.exr", depth, s, t);

                weightFilms[BufferIndex(s, t)] = std::unique_ptr<Film>(new Film(
                    film->fullResolution,
                    Bounds2f(Point2f(0, 0), Point2f(1, 1)),
                    std::unique_ptr<Filter>(CreateBoxFilter(ParamSet())),
                    film->diagonal * 1000, filename, 1.f));
            }
        }
    }

    // Render and write the output image to disk
    if (scene.lights.size() > 0) {
        StatTimer timer(&renderingTime);
        ParallelFor2D([&](const Point2i tile) {
            // Render a single tile using BDPT
            MemoryArena arena;
            int seed = tile.y * nXTiles + tile.x;
            std::unique_ptr<Sampler> tileSampler = sampler->Clone(seed);
            int x0 = sampleBounds.pMin.x + tile.x * tileSize;
            int x1 = std::min(x0 + tileSize, sampleBounds.pMax.x);
            int y0 = sampleBounds.pMin.y + tile.y * tileSize;
            int y1 = std::min(y0 + tileSize, sampleBounds.pMax.y);
            Bounds2i tileBounds(Point2i(x0, y0), Point2i(x1, y1));
            std::unique_ptr<FilmTile> filmTile =
                camera->film->GetFilmTile(tileBounds);
            for (Point2i pPixel : tileBounds) {
                tileSampler->StartPixel(pPixel);
                if (!InsideExclusive(pPixel, pixelBounds))
                    continue;
                do {
                    // Generate a single sample using BDPT
                    Point2f pFilm = (Point2f)pPixel + tileSampler->Get2D();

                    // Trace the camera and light subpaths
                    Vertex *cameraVertices = arena.Alloc<Vertex>(maxDepth + 2);
                    Vertex *lightVertices = arena.Alloc<Vertex>(maxDepth + 1);
                    int nCamera = GenerateCameraSubpath(
                        scene, *tileSampler, arena, maxDepth + 2, *camera,
                        pFilm, cameraVertices);
                    int nLight = GenerateLightSubpath(
                        scene, *tileSampler, arena, maxDepth + 1,
                        cameraVertices[0].time(), *lightDistr, lightVertices);

                    // Execute all BDPT connection strategies
                    Spectrum L(0.f);
                    for (int t = 1; t <= nCamera; ++t) {
                        for (int s = 0; s <= nLight; ++s) {
                            int depth = t + s - 2;
                            if ((s == 1 && t == 1) || depth < 0 ||
                                depth > maxDepth)
                                continue;
                            // Execute the $(s, t)$ connection strategy and
                            // update _L_
                            Point2f pFilmNew = pFilm;
                            Float misWeight = 0.f;
                            Spectrum Lpath = ConnectBDPT(
                                scene, lightVertices, cameraVertices, s, t,
                                *lightDistr, *camera, *tileSampler, &pFilmNew,
                                &misWeight);
                            if (visualizeStrategies || visualizeWeights) {
                                Spectrum value;
                                if (visualizeStrategies)
                                    value =
                                        misWeight == 0 ? 0 : Lpath / misWeight;
                                if (visualizeWeights) value = Lpath;
                                weightFilms[BufferIndex(s, t)]->AddSplat(
                                    pFilmNew, value);
                            }
                            if (t != 1)
                                L += Lpath;
                            else
                                film->AddSplat(pFilmNew, Lpath);
                        }
                    }
                    filmTile->AddSample(pFilm, L);
                    arena.Reset();
                } while (tileSampler->StartNextSample());
            }
            film->MergeFilmTile(std::move(filmTile));
            reporter.Update();
        }, Point2i(nXTiles, nYTiles));
        reporter.Done();
    }
    film->WriteImage(1.0f / sampler->samplesPerPixel);

    // Write buffers for debug visualization
    if (visualizeStrategies || visualizeWeights) {
        const Float invSampleCount = 1.0f / sampler->samplesPerPixel;
        for (size_t i = 0; i < weightFilms.size(); ++i)
            if (weightFilms[i]) weightFilms[i]->WriteImage(invSampleCount);
    }
}
开发者ID:zhongleiyang,项目名称:pbrt-v3,代码行数:101,代码来源:bdpt.cpp

示例6: Render


//.........这里部分代码省略.........
            for (int s = 0; s <= depth + 2; ++s) {
                int t = depth + 2 - s;
                if (t == 0 || (s == 1 && t == 1)) continue;

                char filename[32];
                snprintf(filename, sizeof(filename),
                         "bdpt_d%02i_s%02i_t%02i.exr", depth, s, t);

                films[BufferIndex(s, t)] = std::unique_ptr<Film>(new Film(
                    film->fullResolution,
                    Bounds2f(Point2f(0, 0), Point2f(1, 1)),
                    CreateBoxFilter(ParamSet()),
                    film->diagonal * 1000,  // XXX what does this parameter
                                            // mean? Why the multiplication?
                    filename, 1.f, 2.2f));
            }
        }
    }

    // Render and write the output image to disk
    {
        StatTimer timer(&renderingTime);
        ParallelFor([&](const Point2i bucket) {
            // Render a single bucket using BDPT
            MemoryArena arena;
            int seed = bucket.y * nXBuckets + bucket.x;
            std::unique_ptr<Sampler> bucketSampler = sampler->Clone(seed);
            int x0 = sampleBounds.pMin.x + bucket.x * bucketSize;
            int x1 = std::min(x0 + bucketSize, sampleBounds.pMax.x);
            int y0 = sampleBounds.pMin.y + bucket.y * bucketSize;
            int y1 = std::min(y0 + bucketSize, sampleBounds.pMax.y);
            Bounds2i bucketBounds(Point2i(x0, y0), Point2i(x1, y1));
            std::unique_ptr<FilmTile> filmTile =
                camera->film->GetFilmTile(bucketBounds);
            for (Point2i pixel : bucketBounds) {
                bucketSampler->StartPixel(pixel);
                do {
                    // Generate a single sample using BDPT
                    Point2f rasterPos((Float)pixel.x, (Float)pixel.y);
                    rasterPos += bucketSampler->Get2D();

                    // Trace the light and camera subpaths
                    Vertex *cameraSubpath =
                        (Vertex *)arena.Alloc<Vertex>(maxdepth + 2);
                    Vertex *lightSubpath =
                        (Vertex *)arena.Alloc<Vertex>(maxdepth + 1);
                    int nCamera = GenerateCameraSubpath(
                        scene, *bucketSampler, arena, maxdepth + 2, *camera,
                        rasterPos, cameraSubpath);
                    int nLight = GenerateLightSubpath(
                        scene, *bucketSampler, arena, maxdepth + 1,
                        cameraSubpath[0].GetTime(), *lightDistr, lightSubpath);

                    // Execute all connection strategies
                    Spectrum pixelWeight(0.f);
                    for (int t = 1; t <= nCamera; ++t) {
                        for (int s = 0; s <= nLight; ++s) {
                            int depth = t + s - 2;
                            if ((s == 1 && t == 1) || depth < 0 ||
                                depth > maxdepth)
                                continue;
                            // Execute the $(s, t)$ connection strategy
                            Point2f finalRasterPos = rasterPos;
                            Float misWeight = 0.f;
                            Spectrum weight = ConnectBDPT(
                                scene, lightSubpath, cameraSubpath, s, t,
                                *lightDistr, *camera, *bucketSampler,
                                &finalRasterPos, &misWeight);
                            if (visualize_strategies || visualize_weights) {
                                Spectrum value(1.0f);
                                if (visualize_strategies) value *= weight;
                                if (visualize_weights) value *= misWeight;
                                films[BufferIndex(s, t)]->Splat(finalRasterPos,
                                                                value);
                            }
                            if (t != 1)
                                pixelWeight += weight * misWeight;
                            else
                                film->Splat(finalRasterPos, weight * misWeight);
                        }
                    }
                    filmTile->AddSample(rasterPos, pixelWeight, 1.0f);
                    arena.Reset();
                } while (bucketSampler->StartNextSample());
            }
            film->MergeFilmTile(std::move(filmTile));
            reporter.Update();
        }, Point2i(nXBuckets, nYBuckets));
        reporter.Done();
    }
    film->WriteImage(1.0f / sampler->samplesPerPixel);

    // Write buffers for debug visualization
    if (visualize_strategies || visualize_weights) {
        const Float invSampleCount = 1.0f / sampler->samplesPerPixel;
        for (size_t i = 0; i < films.size(); ++i) {
            if (films[i]) films[i]->WriteImage(invSampleCount);
        }
    }
}
开发者ID:acrlakshman,项目名称:pbrt-v3,代码行数:101,代码来源:bdpt.cpp


注:本文中的MemoryArena::Reset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。