本文整理汇总了C++中MemArena类的典型用法代码示例。如果您正苦于以下问题:C++ MemArena类的具体用法?C++ MemArena怎么用?C++ MemArena使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MemArena类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: usable
namespace Memory {
// The base pointer to the auto-mirrored arena.
u8* base = NULL;
#ifdef __SYMBIAN32__
RChunk* memmap;
#else
// The MemArena class
MemArena g_arena;
#endif
// ==============
// 64-bit: Pointers to low-mem (sub-0x10000000) mirror
// 32-bit: Same as the corresponding physical/virtual pointers.
u8 *m_pRAM;
u8 *m_pRAM2;
u8 *m_pRAM3;
u8 *m_pScratchPad;
u8 *m_pVRAM;
u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM;
u8 *m_pUncachedRAM;
u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently.
u8 *m_pPhysicalRAM2;
u8 *m_pUncachedRAM2;
u8 *m_pKernelRAM2;
u8 *m_pPhysicalRAM3;
u8 *m_pUncachedRAM3;
u8 *m_pKernelRAM3;
// VRAM is mirrored 4 times. The second and fourth mirrors are swizzled.
// In practice, a game accessing the mirrors most likely is deswizzling the depth buffer.
u8 *m_pPhysicalVRAM1;
u8 *m_pPhysicalVRAM2;
u8 *m_pPhysicalVRAM3;
u8 *m_pPhysicalVRAM4;
u8 *m_pUncachedVRAM1;
u8 *m_pUncachedVRAM2;
u8 *m_pUncachedVRAM3;
u8 *m_pUncachedVRAM4;
// Holds the ending address of the PSP's user space.
// Required for HD Remasters to work properly.
// This replaces RAM_NORMAL_SIZE at runtime.
u32 g_MemorySize;
// Used to store the PSP model on game startup.
u32 g_PSPModel;
recursive_mutex g_shutdownLock;
// We don't declare the IO region in here since its handled by other means.
static MemoryView views[] =
{
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM1, 0x04000000, 0x00200000, 0},
{NULL, &m_pPhysicalVRAM2, 0x04200000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pPhysicalVRAM3, 0x04400000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pPhysicalVRAM4, 0x04600000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM1, 0x44000000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM2, 0x44200000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM3, 0x44400000, 0x00200000, MV_MIRROR_PREVIOUS},
{NULL, &m_pUncachedVRAM4, 0x44600000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
// Starts at memory + 31 MB.
{&m_pRAM2, &m_pPhysicalRAM2, 0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM},
{NULL, &m_pUncachedRAM2, 0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
{NULL, &m_pKernelRAM2, 0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
// Starts at memory + 31 * 2 MB.
{&m_pRAM3, &m_pPhysicalRAM3, 0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM},
{NULL, &m_pUncachedRAM3, 0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
{NULL, &m_pKernelRAM3, 0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};
static const int num_views = sizeof(views) / sizeof(MemoryView);
inline static bool CanIgnoreView(const MemoryView &view) {
#if defined(_M_IX86) || defined(_M_ARM32) || defined(_XBOX)
// Basically, 32-bit platforms can ignore views that are masked out anyway.
return (view.flags & MV_MIRROR_PREVIOUS) && (view.virtual_address & ~MEMVIEW32_MASK) != 0;
#else
return false;
#endif
}
// yeah, this could also be done in like two bitwise ops...
#define SKIP(a_flags, b_flags)
// if (!(a_flags & MV_WII_ONLY) && (b_flags & MV_WII_ONLY))
// continue;
// if (!(a_flags & MV_FAKE_VMEM) && (b_flags & MV_FAKE_VMEM))
//.........这里部分代码省略.........
示例2: MemoryMap_Setup
void MemoryMap_Setup(u32 flags)
{
// Find a base to reserve 256MB
#if defined(_XBOX)
base = (u8*)VirtualAlloc(0, 0x10000000, MEM_RESERVE|MEM_LARGE_PAGES, PAGE_READWRITE);
#elif defined(__SYMBIAN32__)
memmap = new RChunk();
memmap->CreateDisconnectedLocal(0 , 0, 0x10000000);
base = memmap->Base();
#else
size_t total_mem = 0;
for (int i = 0; i < num_views; i++)
{
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (!CanIgnoreView(views[i]))
total_mem += g_arena.roundup(views[i].size);
}
// Grab some pagefile backed memory out of the void ...
g_arena.GrabLowMemSpace(total_mem);
// 32-bit Windows retrieves base a different way
#if defined(_M_X64) || !defined(_WIN32)
// This really shouldn't fail - in 64-bit, there will always be enough address space.
// Linux32 is fine with the x64 method, although limited to 32-bit with no automirrors.
base = MemArena::Find4GBBase();
#endif
#endif
// Now, create views in high memory where there's plenty of space.
#if defined(_WIN32) && !defined(_M_X64) && !defined(_XBOX)
// Try a whole range of possible bases. Return once we got a valid one.
int base_attempts = 0;
u32 max_base_addr = 0x7FFF0000 - 0x10000000;
for (u32 base_addr = 0x01000000; base_addr < max_base_addr; base_addr += 0x400000)
{
base_attempts++;
base = (u8 *)base_addr;
if (Memory_TryBase(flags))
{
INFO_LOG(MEMMAP, "Found valid memory base at %p after %i tries.", base, base_attempts);
base_attempts = 0;
break;
}
}
if (base_attempts)
PanicAlert("No possible memory base pointer found!");
#else
// Try base we retrieved earlier
if (!Memory_TryBase(flags))
{
ERROR_LOG(MEMMAP, "MemoryMap_Setup: Failed finding a memory base.");
PanicAlert("MemoryMap_Setup: Failed finding a memory base.");
}
#endif
return;
}
示例3: Init
namespace Memory
{
// The base pointer to the auto-mirrored arena.
u8* base = NULL;
// The MemArena class
MemArena g_arena;
// ==============
// 64-bit: Pointers to low-mem (sub-0x10000000) mirror
// 32-bit: Same as the corresponding physical/virtual pointers.
u8 *m_pRAM;
u8 *m_pScratchPad;
u8 *m_pVRAM;
u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM;
u8 *m_pUncachedRAM;
u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently.
u8 *m_pPhysicalVRAM;
u8 *m_pUncachedVRAM;
// Holds the ending address of the PSP's user space.
// Required for HD Remasters to work properly.
u32 g_MemoryMask;
u32 g_MemorySize;
// We don't declare the IO region in here since its handled by other means.
static MemoryView views[] =
{
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM, 0x04000000, 0x00800000, 0},
{NULL, &m_pUncachedVRAM, 0x44000000, 0x00800000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, 0}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS},
{NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};
static const int num_views = sizeof(views) / sizeof(MemoryView);
void Init()
{
int flags = 0;
Memory::g_MemoryMask = Memory::g_MemorySize - 1;
for(int i = 0; i < ARRAY_SIZE(views); i++) {
if(views[i].size == 0)
views[i].size = g_MemorySize;
}
base = MemoryMap_Setup(views, num_views, flags, &g_arena);
INFO_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p, uncached @ %p)",
m_pRAM, m_pPhysicalRAM, m_pUncachedRAM);
}
void DoState(PointerWrap &p)
{
p.DoArray(m_pRAM, g_MemorySize);
p.DoMarker("RAM");
p.DoArray(m_pVRAM, VRAM_SIZE);
p.DoMarker("VRAM");
p.DoArray(m_pScratchPad, SCRATCHPAD_SIZE);
p.DoMarker("ScratchPad");
p.Do(g_RemasterMode); // TODO: Need to test more if this and MemoryMask need to be saved in the state
p.DoMarker("RemasterMode");
p.Do(g_MemoryMask);
p.DoMarker("MemoryMask");
p.Do(g_DoubleTextureCoordinates); // TODO: Is there a more appropriate place for this?
p.DoMarker("DoubleTextureCoordinates");
}
void Shutdown()
{
u32 flags = 0;
MemoryMap_Shutdown(views, num_views, flags, &g_arena);
g_arena.ReleaseSpace();
base = NULL;
INFO_LOG(MEMMAP, "Memory system shut down.");
}
void Clear()
{
if (m_pRAM)
memset(m_pRAM, 0, g_MemorySize);
if (m_pScratchPad)
memset(m_pScratchPad, 0, SCRATCHPAD_SIZE);
if (m_pVRAM)
memset(m_pVRAM, 0, VRAM_SIZE);
}
u32 Read_Instruction(u32 address)
//.........这里部分代码省略.........
示例4: Init
namespace Memory
{
// The base pointer to the auto-mirrored arena.
u8* base = NULL;
// The MemArena class
MemArena g_arena;
// ==============
// 64-bit: Pointers to low-mem (sub-0x10000000) mirror
// 32-bit: Same as the corresponding physical/virtual pointers.
u8 *m_pRAM;
u8 *m_pRAM2;
u8 *m_pRAM3;
u8 *m_pScratchPad;
u8 *m_pVRAM;
u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM;
u8 *m_pUncachedRAM;
u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently.
u8 *m_pPhysicalRAM2;
u8 *m_pUncachedRAM2;
u8 *m_pKernelRAM2;
u8 *m_pPhysicalRAM3;
u8 *m_pUncachedRAM3;
u8 *m_pKernelRAM3;
u8 *m_pPhysicalVRAM;
u8 *m_pUncachedVRAM;
// Holds the ending address of the PSP's user space.
// Required for HD Remasters to work properly.
// These replace RAM_NORMAL_SIZE and RAM_NORMAL_MASK, respectively.
u32 g_MemorySize;
u32 g_MemoryMask;
// Used to store the PSP model on game startup.
u32 g_PSPModel;
// We don't declare the IO region in here since its handled by other means.
static MemoryView views[] =
{
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM, 0x04000000, 0x00800000, 0},
{NULL, &m_pUncachedVRAM, 0x44000000, 0x00800000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
// Starts at memory + 31 MB.
{&m_pRAM2, &m_pPhysicalRAM2, 0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM},
{NULL, &m_pUncachedRAM2, 0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
{NULL, &m_pKernelRAM2, 0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
// Starts at memory + 31 * 2 MB.
{&m_pRAM3, &m_pPhysicalRAM3, 0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM},
{NULL, &m_pUncachedRAM3, 0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
{NULL, &m_pKernelRAM3, 0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};
static const int num_views = sizeof(views) / sizeof(MemoryView);
void Init()
{
int flags = 0;
// This mask is used ONLY after validating the address is in the correct range.
// So let's just use a fixed mask to remove the uncached/user memory bits.
// Using (Memory::g_MemorySize - 1) won't work for e.g. 0x04C00000.
Memory::g_MemoryMask = 0x07FFFFFF;
// On some 32 bit platforms, you can only map < 32 megs at a time.
const static int MAX_MMAP_SIZE = 31 * 1024 * 1024;
_dbg_assert_msg_(MEMMAP, g_MemorySize < MAX_MMAP_SIZE * 3, "ACK - too much memory for three mmap views.");
for (size_t i = 0; i < ARRAY_SIZE(views); i++) {
if (views[i].flags & MV_IS_PRIMARY_RAM)
views[i].size = std::min((int)g_MemorySize, MAX_MMAP_SIZE);
if (views[i].flags & MV_IS_EXTRA1_RAM)
views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE, 0), MAX_MMAP_SIZE);
if (views[i].flags & MV_IS_EXTRA2_RAM)
views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE * 2, 0), MAX_MMAP_SIZE);
}
base = MemoryMap_Setup(views, num_views, flags, &g_arena);
INFO_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p, uncached @ %p)",
m_pRAM, m_pPhysicalRAM, m_pUncachedRAM);
}
void DoState(PointerWrap &p)
{
auto s = p.Section("Memory", 1, 2);
if (!s)
return;
if (s < 2) {
//.........这里部分代码省略.........
示例5: Init
namespace Memory {
u8* g_base; ///< The base pointer to the auto-mirrored arena.
static MemArena arena; ///< The MemArena class
u8* g_exefs_code; ///< ExeFS:/.code is loaded here
u8* g_system_mem; ///< System memory
u8* g_heap; ///< Application heap (main memory)
u8* g_heap_linear; ///< Linear heap
u8* g_vram; ///< Video memory (VRAM) pointer
u8* g_shared_mem; ///< Shared memory
u8* g_dsp_mem; ///< DSP memory
u8* g_kernel_mem; ///< Kernel memory
static u8* physical_bootrom; ///< Bootrom physical memory
static u8* uncached_bootrom;
static u8* physical_exefs_code; ///< Phsical ExeFS:/.code is loaded here
static u8* physical_system_mem; ///< System physical memory
static u8* physical_fcram; ///< Main physical memory (FCRAM)
static u8* physical_heap_gsp; ///< GSP heap physical memory
static u8* physical_vram; ///< Video physical memory (VRAM)
static u8* physical_shared_mem; ///< Physical shared memory
static u8* physical_dsp_mem; ///< Physical DSP memory
static u8* physical_kernel_mem; ///< Kernel memory
// We don't declare the IO region in here since its handled by other means.
static MemoryView g_views[] = {
{&g_exefs_code, &physical_exefs_code, EXEFS_CODE_VADDR, EXEFS_CODE_SIZE, 0},
{&g_vram, &physical_vram, VRAM_VADDR, VRAM_SIZE, 0},
{&g_heap, &physical_fcram, HEAP_VADDR, HEAP_SIZE, MV_IS_PRIMARY_RAM},
{&g_shared_mem, &physical_shared_mem, SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, 0},
{&g_system_mem, &physical_system_mem, SYSTEM_MEMORY_VADDR, SYSTEM_MEMORY_SIZE, 0},
{&g_dsp_mem, &physical_dsp_mem, DSP_MEMORY_VADDR, DSP_MEMORY_SIZE, 0},
{&g_kernel_mem, &physical_kernel_mem, KERNEL_MEMORY_VADDR, KERNEL_MEMORY_SIZE, 0},
{&g_heap_linear, &physical_heap_gsp, HEAP_LINEAR_VADDR, HEAP_LINEAR_SIZE, 0},
};
/*static MemoryView views[] =
{
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM, 0x04000000, 0x00800000, 0},
{NULL, &m_pUncachedVRAM, 0x44000000, 0x00800000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};*/
static const int kNumMemViews = sizeof(g_views) / sizeof(MemoryView); ///< Number of mem views
void Init() {
int flags = 0;
for (size_t i = 0; i < ARRAY_SIZE(g_views); i++) {
if (g_views[i].flags & MV_IS_PRIMARY_RAM)
g_views[i].size = FCRAM_SIZE;
}
g_base = MemoryMap_Setup(g_views, kNumMemViews, flags, &arena);
MemBlock_Init();
LOG_DEBUG(HW_Memory, "initialized OK, RAM at %p (mirror at 0 @ %p)", g_heap,
physical_fcram);
}
void Shutdown() {
u32 flags = 0;
MemoryMap_Shutdown(g_views, kNumMemViews, flags, &arena);
arena.ReleaseSpace();
MemBlock_Shutdown();
g_base = nullptr;
g_exefs_code = nullptr;
g_system_mem = nullptr;
g_heap = nullptr;
g_heap_linear = nullptr;
g_vram = nullptr;
g_shared_mem = nullptr;
g_dsp_mem = nullptr;
g_kernel_mem = nullptr;
physical_bootrom = nullptr;
uncached_bootrom = nullptr;
physical_exefs_code = nullptr;
physical_system_mem = nullptr;
physical_fcram = nullptr;
physical_heap_gsp = nullptr;
physical_vram = nullptr;
physical_shared_mem = nullptr;
physical_dsp_mem = nullptr;
physical_kernel_mem = nullptr;
LOG_DEBUG(HW_Memory, "shutdown OK");
}
//.........这里部分代码省略.........
示例6: Memory_TryBase
namespace Memory {
// The base pointer to the auto-mirrored arena.
u8* base = NULL;
// The MemArena class
MemArena g_arena;
// ==============
u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM;
u8 *m_pUncachedRAM;
u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently.
u8 *m_pPhysicalRAM2;
u8 *m_pUncachedRAM2;
u8 *m_pKernelRAM2;
u8 *m_pPhysicalRAM3;
u8 *m_pUncachedRAM3;
u8 *m_pKernelRAM3;
// VRAM is mirrored 4 times. The second and fourth mirrors are swizzled.
// In practice, a game accessing the mirrors most likely is deswizzling the depth buffer.
u8 *m_pPhysicalVRAM1;
u8 *m_pPhysicalVRAM2;
u8 *m_pPhysicalVRAM3;
u8 *m_pPhysicalVRAM4;
u8 *m_pUncachedVRAM1;
u8 *m_pUncachedVRAM2;
u8 *m_pUncachedVRAM3;
u8 *m_pUncachedVRAM4;
// Holds the ending address of the PSP's user space.
// Required for HD Remasters to work properly.
// This replaces RAM_NORMAL_SIZE at runtime.
u32 g_MemorySize;
// Used to store the PSP model on game startup.
u32 g_PSPModel;
std::recursive_mutex g_shutdownLock;
// We don't declare the IO region in here since its handled by other means.
static MemoryView views[] =
{
{&m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{&m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pPhysicalVRAM1, 0x04000000, 0x00200000, 0},
{&m_pPhysicalVRAM2, 0x04200000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pPhysicalVRAM3, 0x04400000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pPhysicalVRAM4, 0x04600000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM1, 0x44000000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM2, 0x44200000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM3, 0x44400000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pUncachedVRAM4, 0x44600000, 0x00200000, MV_MIRROR_PREVIOUS},
{&m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{&m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{&m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM | MV_KERNEL},
// Starts at memory + 31 MB.
{&m_pPhysicalRAM2, 0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM},
{&m_pUncachedRAM2, 0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
{&m_pKernelRAM2, 0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM | MV_KERNEL},
// Starts at memory + 31 * 2 MB.
{&m_pPhysicalRAM3, 0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM},
{&m_pUncachedRAM3, 0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
{&m_pKernelRAM3, 0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM | MV_KERNEL},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};
static const int num_views = sizeof(views) / sizeof(MemoryView);
inline static bool CanIgnoreView(const MemoryView &view) {
#if PPSSPP_ARCH(32BIT)
// Basically, 32-bit platforms can ignore views that are masked out anyway.
return (view.flags & MV_MIRROR_PREVIOUS) && (view.virtual_address & ~MEMVIEW32_MASK) != 0;
#else
return false;
#endif
}
#if defined(IOS) && PPSSPP_ARCH(64BIT)
#define SKIP(a_flags, b_flags) \
if ((b_flags) & MV_KERNEL) \
continue;
#else
#define SKIP(a_flags, b_flags) \
;
#endif
static bool Memory_TryBase(u32 flags) {
// OK, we know where to find free space. Now grab it!
// We just mimic the popular BAT setup.
size_t position = 0;
size_t last_position = 0;
// Zero all the pointers to be sure.
//.........这里部分代码省略.........
示例7: Init
namespace Memory
{
// The base pointer to the auto-mirrored arena.
u8* base = NULL;
// The MemArena class
MemArena g_arena;
// ==============
// 64-bit: Pointers to low-mem (sub-0x10000000) mirror
// 32-bit: Same as the corresponding physical/virtual pointers.
u8 *m_pRAM;
u8 *m_pScratchPad;
u8 *m_pVRAM;
u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM;
u8 *m_pUncachedRAM;
u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently.
u8 *m_pPhysicalVRAM;
u8 *m_pUncachedVRAM;
// We don't declare the IO region in here since its handled by other means.
static const MemoryView views[] =
{
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM, 0x04000000, 0x00800000, 0},
{NULL, &m_pUncachedVRAM, 0x44000000, 0x00800000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, RAM_SIZE, 0}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, RAM_SIZE, MV_MIRROR_PREVIOUS},
{NULL, &m_pKernelRAM, 0x88000000, RAM_SIZE, MV_MIRROR_PREVIOUS},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};
static const int num_views = sizeof(views) / sizeof(MemoryView);
void Init()
{
int flags = 0;
base = MemoryMap_Setup(views, num_views, flags, &g_arena);
INFO_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p, uncached @ %p)",
m_pRAM, m_pPhysicalRAM, m_pUncachedRAM);
}
void DoState(PointerWrap &p)
{
p.DoArray(m_pRAM, RAM_SIZE);
p.DoMarker("RAM");
p.DoArray(m_pVRAM, VRAM_SIZE);
p.DoMarker("VRAM");
p.DoArray(m_pScratchPad, SCRATCHPAD_SIZE);
p.DoMarker("ScratchPad");
}
void Shutdown()
{
u32 flags = 0;
MemoryMap_Shutdown(views, num_views, flags, &g_arena);
g_arena.ReleaseSpace();
base = NULL;
INFO_LOG(MEMMAP, "Memory system shut down.");
}
void Clear()
{
if (m_pRAM)
memset(m_pRAM, 0, RAM_SIZE);
if (m_pScratchPad)
memset(m_pScratchPad, 0, SCRATCHPAD_SIZE);
if (m_pVRAM)
memset(m_pVRAM, 0, VRAM_SIZE);
}
bool AreMemoryBreakpointsActivated()
{
#ifndef ENABLE_MEM_CHECK
return false;
#else
return true;
#endif
}
u32 Read_Instruction(u32 address)
{
u32 inst = Read_U32(address);
if (MIPS_IS_EMUHACK(inst) && MIPSComp::jit)
return MIPSComp::jit->GetBlockCache()->GetOriginalFirstOp(inst & MIPS_EMUHACK_VALUE_MASK);
else
return inst;
}
//.........这里部分代码省略.........
示例8: Init
namespace Memory {
u8* g_base = NULL; ///< The base pointer to the auto-mirrored arena.
MemArena g_arena; ///< The MemArena class
u8* g_heap_gsp = NULL; ///< GSP heap (main memory)
u8* g_heap = NULL; ///< Application heap (main memory)
u8* g_vram = NULL; ///< Video memory (VRAM) pointer
u8* g_physical_bootrom = NULL; ///< Bootrom physical memory
u8* g_uncached_bootrom = NULL;
u8* g_physical_fcram = NULL; ///< Main physical memory (FCRAM)
u8* g_physical_heap_gsp = NULL;
u8* g_physical_vram = NULL; ///< Video physical memory (VRAM)
u8* g_physical_scratchpad = NULL; ///< Scratchpad memory used for main thread stack
// We don't declare the IO region in here since its handled by other means.
static MemoryView g_views[] = {
{&g_vram, &g_physical_vram, VRAM_VADDR, VRAM_SIZE, 0},
{&g_heap_gsp, &g_physical_heap_gsp, HEAP_GSP_VADDR, HEAP_GSP_SIZE, 0},
{&g_heap, &g_physical_fcram, HEAP_VADDR, HEAP_SIZE, MV_IS_PRIMARY_RAM},
};
/*static MemoryView views[] =
{
{&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0},
{NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
{&m_pVRAM, &m_pPhysicalVRAM, 0x04000000, 0x00800000, 0},
{NULL, &m_pUncachedVRAM, 0x44000000, 0x00800000, MV_MIRROR_PREVIOUS},
{&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs)
{NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
{NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
// implement those.
};*/
static const int kNumMemViews = sizeof(g_views) / sizeof(MemoryView); ///< Number of mem views
void Init() {
int flags = 0;
for (size_t i = 0; i < ARRAY_SIZE(g_views); i++) {
if (g_views[i].flags & MV_IS_PRIMARY_RAM)
g_views[i].size = FCRAM_SIZE;
}
g_base = MemoryMap_Setup(g_views, kNumMemViews, flags, &g_arena);
NOTICE_LOG(MEMMAP, "initialized OK, RAM at %p (mirror at 0 @ %p)", g_heap,
g_physical_fcram);
}
void Shutdown() {
u32 flags = 0;
MemoryMap_Shutdown(g_views, kNumMemViews, flags, &g_arena);
g_arena.ReleaseSpace();
g_base = NULL;
NOTICE_LOG(MEMMAP, "shutdown OK");
}
} // namespace
示例9: Memory_TryBase
static bool Memory_TryBase(u32 flags) {
// OK, we know where to find free space. Now grab it!
// We just mimic the popular BAT setup.
#if defined(_XBOX)
void *ptr;
#elif !defined(__SYMBIAN32__)
size_t position = 0;
size_t last_position = 0;
#endif
// Zero all the pointers to be sure.
for (int i = 0; i < num_views; i++)
{
if (views[i].out_ptr_low)
*views[i].out_ptr_low = 0;
if (views[i].out_ptr)
*views[i].out_ptr = 0;
}
int i;
for (i = 0; i < num_views; i++)
{
const MemoryView &view = views[i];
if (view.size == 0)
continue;
SKIP(flags, view.flags);
#ifdef __SYMBIAN32__
if (!CanIgnoreView(view)) {
memmap->Commit(view.virtual_address & MEMVIEW32_MASK, view.size);
}
*(view.out_ptr) = (u8*)base + (view.virtual_address & MEMVIEW32_MASK);
#elif defined(_XBOX)
if (!CanIgnoreView(view)) {
*(view.out_ptr_low) = (u8*)(base + view.virtual_address);
ptr = VirtualAlloc(base + (view.virtual_address & MEMVIEW32_MASK), view.size, MEM_COMMIT, PAGE_READWRITE);
}
*(view.out_ptr) = (u8*)base + (view.virtual_address & MEMVIEW32_MASK);
#else
if (view.flags & MV_MIRROR_PREVIOUS) {
position = last_position;
} else {
*(view.out_ptr_low) = (u8*)g_arena.CreateView(position, view.size);
if (!*view.out_ptr_low)
goto bail;
}
#ifdef _M_X64
*view.out_ptr = (u8*)g_arena.CreateView(
position, view.size, base + view.virtual_address);
#else
if (CanIgnoreView(view)) {
// No need to create multiple identical views.
*view.out_ptr = *views[i - 1].out_ptr;
} else {
*view.out_ptr = (u8*)g_arena.CreateView(
position, view.size, base + (view.virtual_address & MEMVIEW32_MASK));
if (!*view.out_ptr)
goto bail;
}
#endif
last_position = position;
position += g_arena.roundup(view.size);
#endif
}
return true;
#if !defined(_XBOX) && !defined(__SYMBIAN32__)
bail:
// Argh! ERROR! Free what we grabbed so far so we can try again.
for (int j = 0; j <= i; j++)
{
if (views[i].size == 0)
continue;
SKIP(flags, views[i].flags);
if (views[j].out_ptr_low && *views[j].out_ptr_low)
{
g_arena.ReleaseView(*views[j].out_ptr_low, views[j].size);
*views[j].out_ptr_low = NULL;
}
if (*views[j].out_ptr)
{
if (!CanIgnoreView(views[j])) {
g_arena.ReleaseView(*views[j].out_ptr, views[j].size);
}
*views[j].out_ptr = NULL;
}
}
return false;
#endif
}